Manual

LDM51 Lumos

Version 1.6

Dear User,

You are advised to carefully read this User Manual before turning on the Laser Distance Sensor LDM51 for the first time.

This is necessary to ensure that you will be able to use all the capabilities and features provided by your new purchase.

This product is subject to ongoing technological developments.

Editorial deadline: March 2015

Firmware version: ≥ 5.14

Manual version: V 1.6

File: Manual LDM51 EN V1.6.docx

Note:

Proper care has been used in compiling this document. No liability will be accepted in the event of damage resulting from the failure to comply with the information contained herein.

Revision history

Manual Version	Date	Changes
1.6	13.07.2015	SSI wiring diagram
		SSI transmission rate
1.5	01.07.2015	Minor changes
1.4	12.03.2015	Device types added
1.3	30.07.2014	New design

ASTECH GmbH, Schonenfahrerstr. 5, D-18057 Rostock

Internet www.astech.de E-Mail info@astech.de

Telefon +49 (0)381 / 44073-0 Telefax +49 (0)381 / 44073-20

Page 2 ASTECH GmbH

I. Content

1	Gene	eral Information	8
2	Safet	y advice	9
	2.1	Basic safety advice	9
	2.2	Safety advice for Laser Class 2	. 10
	2.3	Advice for operating device	. 10
	2.4	Norms	
	2.5	Disposal	. 12
3	Oper	ating conditions	. 13
	3.1	Electrical installation conditions	. 13
	3.2	Operating and storage conditions	. 13
	3.3	Appropriate use	. 13
	3.4	Improperly use – error sources	. 14
4	Devi	ce description	. 16
	4.1	General device description	. 16
	4.2	Device Types	. 17
	4.3	Technical Data	. 17
	4.4	Laser beam image	
	4.5	Mechanical integration requirements	. 21
	4.6	Connector pin assignments	. 23
5	Inter	face description	. 24
	5.1	Interface overview	. 24
	5.2	Serial interface RS-232	. 25
	5.3	Serial interface RS-422	. 26
	5.4	Serial interface RS-485	. 27
	5.5	SSI – Synchronous serial interface	
	5.6	Profibus interface	
	5.7	Q1/Q2/Q3 – Digital switching output	
	5.8	QA – Analog output	
	5.9	TRI + TRO Trigger	.36
6	Start	-up LDM51	. 39
	6.1	Preparation of start-up	. 39
	6.2	Start-up checklist	
	6.3	Ranges and accuracies	
	6.4	Measurement involving moving targets	. 42
7	Desc	ription of commands	.43

	7.1	Overview of commands	43
	7.2	General information	46
	7.3	Transmission protocol	47
	7.4	Operating modes	48
	7.5	Identification commands	50
	7.6	Status commands	51
	7.7	Command for parameter setup	52
	7.8	Direct controlling of the LDM51	67
8	Profi	bus	69
	8.1	ID Number	69
	8.2	Connection conditions	69
	8.3	GSD-File	69
	8.4	Slave address	69
	8.5	Bus termination	70
	8.6	Baud rate	70
	8.7	Length of segment	70
	8.8	Profibus interface	71
	8.9	Configuration data	72
	8.10	Cyclical data exchange – input (slave to master)	72
	8.11	Cyclical data exchange – Output (master to slave)	73
	8.12	Parameter data	74
	8.13	Diagnostic data	77
	8.14	Monitoring	80
9	Main	tenance	81
	9.1	Maintenance by the user	81
	9.2	Firmware update	
	9.3	Repair	81
10) Error	processing	82
11	Acce	ssories (Options)	85
	11.1	RS-232 cable for LDM51	85
	11.2	Connection box TCB30xA	85
	11.3	Adjustment bracket JW51x	86
	11.4	Software LDMTool from version 4.8	86
12	. Part	numbers	87
13	e FG D	eclaration of conformity	88

II. List of figures

Figure 1: Installation and mounting (in mm)	22
Figure 2: Interface cable socket top view	23
Figure 3: LDM51, all connectors	24
Figure 4: Wiring of serial interface RS-232	25
Figure 5: Wiring of serial interface RS-422	26
Figure 6: Wiring of serial interface RS-485	27
Figure 7 : SSI cable jack pin	29
Figure 8 : Wiring of SSI	30
Figure 9: Wiring of Profibus interface	31
Figure 10: Wiring of switching outputs Q1, Q2, Q3	32
Figure 11: Behavior and parameters of the switching outputs	33
Figure 12 : Signal diagram of LDM51 analog output	34
Figure 13 : Behavior of analog output	34
Figure 14: Wiring analog output QA of LDM51	35
Figure 15 : Wiring of trigger input	37
Figure 16: Wiring of trigger output	38
Figure 17 : Program LDMTool	40
Figure 18 : Output of the ID? command	50
Figure 19 : Output of the PA command	51
Figure 20 : Parameter reset with PR command	55
Figure 21 : LDM51 Display	68

III. List of tables

Table 1 : Electrical installation conditions	13
Table 2 : Device types	17
Table 3 : Technical data	17
Table 4 : Laser beam image	21
Table 5 : Connector pin assignments	23
Table 6 : Start-up LDM51	39
Table 7: Ranges and accuracies	41
Table 8 : Overview of commands	43
Table 9: Auto start parameters	52
Table 10 : Scattering of distance measurement	58
Table 11: Error Mode Sex, meaning of parameter x	59
Table 12 : Output format of parameter w	62
Table 13: Output format of parameters x y z	63
Table 14: Termination character(s) TEx, meaning of parameter x	64
Table 15 : Configuration data	72
Table 16: Parameter data class 1 devices	74
Table 17 : Parameter data class 2 devices	75
Table 18 : Profibus diagnostic data	77
Table 19: Error codes	82
Table 20 : Warnings	83
Table 21: Pin assignment of programming cable PC sided	85
Table 22: Pin assignment of programming cable LDM51 sided	85
Table 23 · Part numbers	87

Used Symbols

Sign warns against emitting visible and invisible laser radiation.

Sign warns against danger of electrical power and of electric shock.

Sign warns against danger.

Sign shows information for use in hazardous environments.

Sign indicates important information regarding device use of the device.

The sign shows protection class 3 (protective extra-low voltage).

Sign indicates degree of protection (IP) of the device.

Sign informs that special guidelines had to be applied for device disposal.

1 General Information

The measurement gauge LDM51 measures contactless the distance between itself and nearly every surface and material.

The LDM51 operates with a modulated visible laser with low beam divergence. Newly developed algorithms and most modern technologies of the opto-electronic signal processing allow a save, highly precise and fast distance measurements that can be applied in almost all areas of machinery and plant engineering.

While developing the LDM51 there was paid particular attention to the operation in outdoor areas with high influence of constant light by solar radiation and high temperatures. By its robust aluminum housing and the optional heating the LDM51 is prepared for safe use in harsh surrounding conditions.

Applications:

- Plant automation and process technology
- Positioning applications in transportation and logistic
- Machine-observation and -positioning in metal industry e.g. rollingmills, de-coiler
- Position and height detection in crane applications
- Level measurement in silos and heaps on materials like sand, earth, feed, cereals, cement
- Thickness, length and width detection
- Diameter of steel coils
- Distance measurement on hot glowing steel with temperatures over 1300 °C

Page 8 ASTECH GmbH

2 Safety advice

2.1 Basic safety advice

Please read the safety and operating advice carefully, and observe the advice when operating the device.

Danger of Laser radiation

Do not open the LDM51, otherwise Laser radiation can be emitted that can cause eye injuries. Please observe all information and guidelines for operating the Laser.

The LDM51 corresponds to Laser Class 2 based on the standard IEC 60825-1:2007.

When looking into the laser beam accidentally and for a short moment, the eye will be protected by the eyelid closing reflex.

Danger, electric shock

The LDM51 may only be opened for repair purposes by the manufacturer. If the device is opened arbitrarily without authorization, all warranty claims will expire.

The **operating and storage conditions** have to be observed (see chapter 3). The inobservance of this advice and the adverse use of the device can lead to injuries of the user or to damage of the device.

Connectors may not be plugged or unplugged when voltage is applied. All installation work may only be carried out when no voltage is applied.

The device may only be **operated as intended** and in faultless condition.

Safety installations must not be rendered ineffective.

Safety and warning signs must not be removed.

Protection Class 3, low voltage

The device LDM51 operates with low voltage of DC 10 to 30 volts.

Protection degree: In accordance with the **Protection Degree IP 67**, the LDM51 is protected against jet water and dust, and against short submersion into water.

When operating the device under extreme outdoor environmental conditions, the use of additional weather protection is recommended (e.g. a cover plate with a short distance to the LDM51). Rapid temperature changes can lead to humidity entering the device.

The device is **not shatter-proof**. Do not let the device fall onto the ground, and avoid any shock.

The device is delivered in a solid cardboard box, which is suited for the transport of the device.

The device may **not be used in explosive environments**; otherwise there is the danger of damage to the LDM51 and the surrounding equipment, and of injuries of the user.

2.2 Safety advice for Laser Class 2

Based on the standard EN 60825-1:2007 the LDM51 is in correspondence with laser class 2.

When looking into the laser beam accidentally and for a short moment, the eye will be protected by the eyelid closing reflex. The eyelid closing reflex can be affected by pharmaceuticals, alcohol and other substances.

2.3 Advice for operating device

The LDM51 should not be put into operation when optical parts are fogged or dirty. The optical components of the equipment should not be touched with bare hands!

Dust and dirt are removed from the optical components with

Page 10 ASTECH GmbH

extreme caution! Cleaning with solvents or mechanical means is not allowed

The device must be protected against overheating. The device will not be switched off automatically when the operating temperatures are exceeded. The persisting overheating of the device will lead to a reduced lifetime of the laser diode.

The device must be protected from impact.

The device must be protected from extreme temperature fluctuations. When extreme temperature fluctuations are occurring use additional protection housing.

It is not allowed to operate the device in explosive environments.

The device corresponds to the protection degree IP 67, and is protected against jet water and short submersion. Please observe the conditions for the protection degree IP 67, and observe especially the following advice:

- The device must not be exposed to persisting driving rain or high temperature variations.
- If the device is exposed to humidity, the temperature difference between the device and the environment may be + 5K maximum.

It is necessary to observe the operating and storage conditions.

For the LDM51 use only a supply voltage of 10 V ... 30 V DC (direct current voltage).

The limit values for the input voltage have to be observed. Do not wire inputs as outputs. All outputs are resistant to short circuits. The housing is galvanically separated from the sensor electronics assembly. The interference resistance at electrostatic discharge (ESD) is 4 kV according to IEC 61326-1.

2.4 Norms

The device conforms to the following norms:

IEC 61326-1:2006	Electrical	equipment	for	measurement,	control	and

laboratory use - EMC requirements - Part 1: General requirements (IEC 61326-1:2006); German version EN

61326-1:2007

IEC 60825-1:2007 Safety of Laser products – Part 1: equipment

classification and requirements

(IEC 60825-1:2007), Laser Class 1

IEC 61010-1:2001 Safety requirements for electrical equipment for

measurement, control and laboratory use - General

requirements (IEC 61010-1:2001);

German version EN 61010-1:2001

2.5 Disposal

For the disposal of the device, special environmental protection guidelines apply. Do not dispose the device with the usual domestic refuse. The manufacturer offers to take back the device after the end of the product life cycle, and to dispose of the product in accordance with the effective environmental protection guidelines. Please note that this service is subject to a charge.

Page 12 ASTECH GmbH

3 Operating conditions

3.1 Electrical installation conditions

For the operation of LDM51 use only a DC voltage of 10 V ... 30 V.

The limit values for the input voltage have to be observed. Do not wire inputs as outputs.

All outputs are short circuit proof.

The housing is galvanically separated from the sensor electronics assembly.

The interference resistance at electrostatic discharge (ESD) is 4 kV according to EN 61326-1.

Table 1: Electrical installation conditions

Electrical installation conditions of LDM51			
Supply voltage	10 V 30 V DC (direct current voltage)		
Power consumption	< 10 W (without heating)		

3.2 Operating and storage conditions

Operating temperature -10 °C ... +60 °C (special-type -40 °C ... + 60 °C)

Stroage temperature -40 °C ... +70 °C

Air humidity 15 % ... 90 % not condensing

The mentioned **operating and storage conditions** have to be observed. When the operating temperatures exceed the permitted values, the device will not be switched off automatically. The continuous overheating of the device will reduce the lifetime of the laser diode.

3.3 Appropriate use

The device is intended for the following applications:

Distance measurement and output of measured data via RS-232 or RS-422 interface, analogue output and digital outputs.

It should be noted:

- Operation with correct supply voltage,
- Compliance with environmental conditions, the operating and storage temperature,
- Protection of windows against fogging and soiling,
- Using data lines with specified signal levels,
- Observing of guidelines in this manual.

Measurement through optically transparent material

Measurement through optically transparent materials such as glass, optical filters, acrylic glass etc. can lead to erroneous measurement results. When measuring through optically transparent material, use the function "measurement window". By using this function due to setting a fixed measurement range, a wrong measurement caused by an optical medium in front of the laser - may be avoided. Please take care that the surface of the medium is clean and clear.

3.4 Improperly use – error sources

The device may only be used when the safety advice described in chapter 2 is observed. The non-observance of the safety advice can lead to damages of the device or to injuries of the eyes.

To achieve correct measurement results, avoid the following error sources:

- Measurement against the sun or other intense light sources
- Measurement onto low reflective target surfaces in highly reflective environments
- Measurements onto highly reflective surfaces (mirror)
- Measurements through glass, optical filter, Plexiglas or other transparent materials can lead to measurement errors
- Two or more LDM51 may not be aligned in "frontal view" because the devices interact each other
- Operation and storage of the device under conditions that do not conform with the specifications

Page 14 ASTECH GmbH

The operating temperatures have to be observed. The overheating of the device has to be avoided in any case. When the operating temperatures are exceeded, the device is not switched off automatically. Persisting overheating of the device leads to a reduced lifetime of the laser diode.

4 Device description

4.1 General device description

The LDM51 distance meter is available in different versions. Types can be selected based on the required interface and on the temperature conditions at the place of application.

LDM51 versions designed for an operating temperature of as low as -40 °C can be used for applications outdoors or in refrigerated warehouses. The heating element ensures the operating temperature of the components and free optics (no condensation) of the LDM51.

The required connecting cables are available with straight and angular plug-in connectors. In order to prevent the direct incidence of extraneous light into the device optics, a light protector is available as well that can be screwed onto the device.

Serial interfaces

The LDM51 is equipped with a switchable serial interface. It can operate as RS-232, RS-422 and RS-485. See chapter 5, Interface description.

Outputs

The LDM51 has three switching outputs, an analogue output (4 ... 20 mA). All outputs are parameterizable.

Optional interfaces

The LDM51 can be equipped with an additional Profibus- and/or SSI- Interface

Page 16 ASTECH GmbH

4.2 Device Types

The LDM51 is available in different designs and with different interfaces. The following devices are available:

Table 2 : Device types

Туре	Analog output	Profibus	SSI	Heating
LDM51	Yes	-	-	-
LDM51-h	Yes	-	-	Yes
LDM51P	-	Yes	-	-
LDM51P-h	-	Yes	-	Yes
LDM51S	-	-	yes	-
LDM51S-h	-	-	Yes	Yes
LDM51SP	-	Yes	Yes	-
LDM51SP-h	-	yes	Yes	yes

4.3 Technical Data

Table 3: Technical data

Measurement properties	
Measurement principle	Pulse reflection mixing method
Measured parameter	Distances
Measuring range ¹	
total	0,15 m 500 m
Onto Oralite 5200 target	50 m 500 m
3M 3279 special target	0,15 m 100 m
Onto natural surfaces	0,15 m 100 m
Measurement accuracy ²	
Up to 20 Hz measuring	± 1 mm
frequency	
All measuring frequencies	≤ 2,5 mm
Resolution of measured values	± 0,1 mm
Measuring period, minimum	10 ms

¹ Range for natural, diffusely reflective surfaces; dependent on target reflectivity, stray light, measuring frequency and environmental conditions

² For single measurement, 1 Sigma

Electrical connection conditions		
Supply voltage	10 V 30 V DC	
Power consumption	< 10 W (without heating)	
	< 42 W (with heating, 24 V)	

Laser	
Laser classification	Laser class 2, EN 60825-1:2007
Laser Wavelength	635 nm
Laser Divergence	< 0,2 mrad (50% laser power)
Laser spot in 10 m	4 mm × 5 mm

Environmental and application conditions		
Operating temperature	-40 °C +60 °C, with integrated heating	
	-10 °C +60 °C, without heating	
Storage temperature	-40°C +70°C	
Humidity	15% 95%, non-condensing	
Housing protection class	IP 67	
Shock resistance		
Persistence shock	30 g / 6 ms, DIN ISO 9022-3-30-03-2	
Continuous shock	10 g / 6 ms, DIN ISO 9022-3-31-01-1(2)	
Swing (sine shaped)	1g / 10 Hz 2000 Hz,	
	DIN ISO 9022-3-36-02-1(2)	
EMV	EN 61326-1	
Dimensions	120 mm x 76,5 mm x 40 mm	
LxBxH incl. connections		
Weight	Ca. 700 g	

Page 18 ASTECH GmbH

Interface	
Connections	1x 12-pole, M16 2x 5-pole, M12 B-encoded 1x 5-pole, M12 A-encoded
Serial interfaces	RS-232, RS-422, RS-485
Switching output	3x "High side", belastbar bis zu 0,2 A
Analogue output	4 mA 20 mA Error handling at 3 mA / 21 mA Total output error at 20 mA: 0,15 % at a temperature of 25 °C
Trigger, in- and output	1x
Profibus	
Profibus	DP-V0 Slave IEC 61158 / IEC 61784
Transmission rate	9,6 kBaud 12 MBaud
Identity number	0E36 HEX
Baud rate recognition	Automatic
Terminator	external
Slave address	Can be set via display or SSA command
GSD-File	LDM50E36.GSD, PNO-Profile Encoder Class 1/2
	Configuration of measurement parameters, switching outputs, trigger connection and starting behavior
	Output of measured distance values or error messages, monitoring of internal device temperature
	Storage of all parameters and PB address in NVRAM
SSI	
Transmission rate	200 kHz, 25μs Pause
Signal input/output	Difference signal(RS-422)
	24 bit, binary or Gray-encoded, adjustable

Interface	
	1 validity bit
Potential separation	500 V for signal input
LSB	Bit 0
MSB	Bit 23 (optional Bit 24)

Page 20 ASTECH GmbH

4.4 Laser beam image

The laser beam of the LDM51 has a divergence of $0.13 \text{ mrad } \times 0.17 \text{ mrad}$ (width x height).

The diameter of the laser spot in the exit lens measures 4 mm.

The table below shows the size of the laser spot in dependence on the distance. The laser spot has an elliptical shape.

Table 4: Laser beam image

Distance	Laser spot width	Laser spot height
1 m	5 mm	5 mm
5 m	3 mm	3 mm
10 m	4 mm	5 mm
50 m	5 mm	7 mm
100 m	26 mm	34 mm
200 m	52 mm	68 mm
400 m	104 mm	136 mm
500 m	130 mm	170 mm

The above-mentioned laser spot holds approx. 50% of the entire laser energy. An aura with less energy forms around the spot.

4.5 Mechanical integration requirements

The LDM51 can be screwed on using 3 (underside) or 2 M6 fastening screws respectively (length to be chosen depending on the counter piece). 3 M6 fastening screws plus washers and washer springs are included in the scope of delivery.

The zero point for measurement is identical with the housing front face.

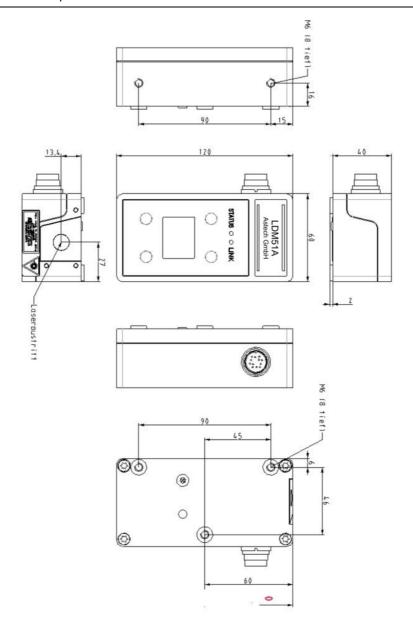


Figure 1: Installation and mounting (in mm)

Page 22 ASTECH GmbH

4.6 Connector pin assignments

The device is connected via interface cable. Various cable lengths are available.

Table 5: Connector pin assignments

Pin	Color code	Signal	Meaning
Α	white	RxD/Rx+	RS-232 Receiver data
			RS-422 Receiver data +
В	brown	Rx-	RS-422 Receiver data -
С	green	TRIG	Trigger input/output
D	yellow	QA	Analog output (3 mA 21 mA)
E	gey	TX-	RS-422 Transmitter data -
F	pink	TxD/Tx+	RS-232 Transmitter data
			RS-422 Transmitter data +
G	blue	Q3	Switching output Q3
Н	red	VCC	Power supply 1030 VDC
J	black	GND _{power}	GND supply voltage
K	violet	Q2	Switching output Q2
L	grey/pink	GND_{Signal}	GND output signal, analog
M	red/blue	Q1	Switching output Q1

The shield of the device cable is to be connected to the shield connector of the equipment, e.g. PLC.

Open and unused cable leads must be insulated. For cable extension only high quality shielded cables has to be used.

There is a reverse polarity protection and an overvoltage protection is guaranteed up to 30 VDC.

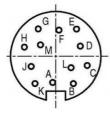


Figure 2: Interface cable socket top view

5 Interface description

5.1 Interface overview

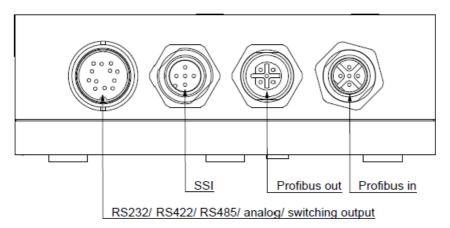


Figure 3: LDM51, all connectors

If the LDM51 types with Profibus interface should be used via serial interface only, the Profibus parameter PB must be disabled with command:

PB 0

Page 24 ASTECH GmbH

5.2 Serial interface RS-232

The serial interface RS-232 can be used for the transmission of measured data or the parameterization of the LDM51.

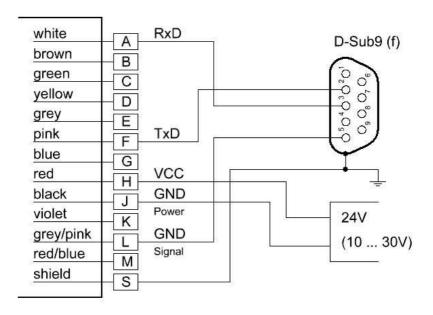


Figure 4: Wiring of serial interface RS-232

5.3 Serial interface RS-422

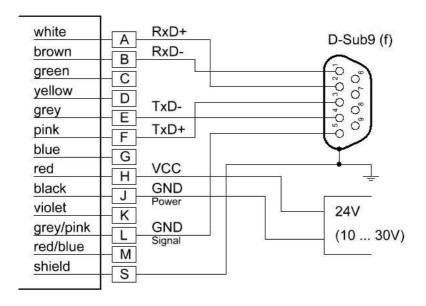


Figure 5: Wiring of serial interface RS-422

Wiring of D-Sub9 is not standardized for RS-422; please check your system

Page 26 ASTECH GmbH

5.4 Serial interface RS-485

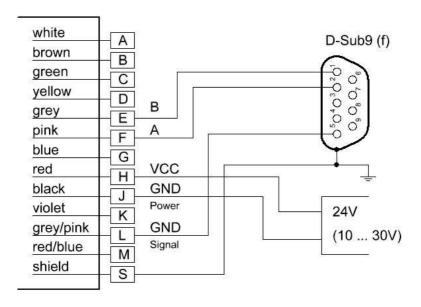


Figure 6: Wiring of serial interface RS-485

Wiring of D-Sub9 is not standardized for RS-422; please check your system

5.5 SSI – Synchronous serial interface

SSI will be parameterized via serial interface or the internal display of the LDM51

SSI data interface is optional for LDM51 (SSI = Synchronous serial interface).

At the request of a SSI clock LDM51 starts the output of measuring values and sends the data bit by bit from the shift register of LDM51(Slave) to a external controller (Master).

It could be used all measuring modes of LDM51. The active measurement mode will be set via serial interface or profibus or internal display.

Setup via serial interface See page 65, SSI – Setting the SSI

parameters

Setup via internal display Parameters / BUS / SSI / SSI mode

SSI work independent of Profibus interface.

Transmission rate 150 kHz ... 300 kHz

Break duration Minimum 25 µs (between 2 bit

sequences)

Data length 24 bit or 25 bit (programmable)

Format Binär oder gray kodiert

Bit string:

1) Data length 24 bits \rightarrow bit 23 – 0 = Data string

Bit 23 22-1 0
MSB LSB

Page 28 ASTECH GmbH

2) Data length 25 bits \rightarrow bit 24 = error bit, bit 23 – 0 = Data string

Bit	24	23-1	0
	MSB		LSB

The inputs (CLOCK) are galvanic isolated, the potential separation is realized up to 500V.

To ensure undisturbed data transfer paired twisted wires are required.

Clock rate	Cable length
< 300 kHz	< 100 m
< 250 kHz	< 150 m
< 200 kHz	< 200 m

Please not that by using of parameter measurement window MW (page 55) and / or Offset OF (page 57) the distance output value has to be in the positive range (distance value > 0).

Otherwise the SSI output will be 000000.

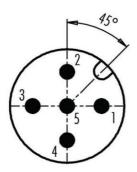


Figure 7: SSI cable jack pin

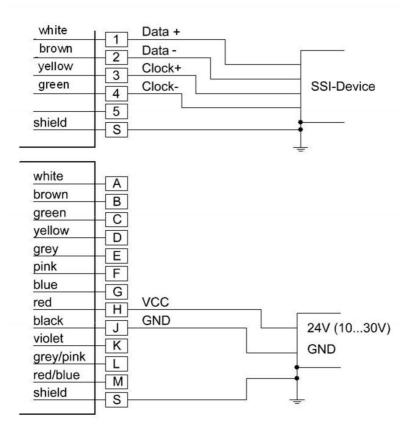


Figure 8 : Wiring of SSI

Page 30 ASTECH GmbH

5.6 Profibus interface

Please see detailed Profibus information in chapter 8, Profibus.

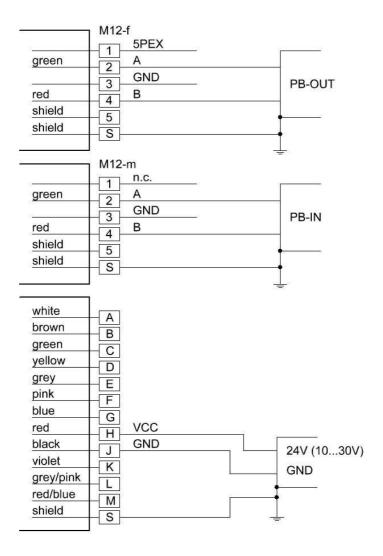


Figure 9: Wiring of Profibus interface

5.7 Q1/Q2/Q3 – Digital switching output

The switching outputs Q1, Q2 and Q3 show distance information as logic switching information. They signalize when values are above or below a preset switching range subject to hysteresis.

Hence, they are perfectly suitable for the direct further processing of monitoring variables such as filling level or object detection. Parameterization is done via the serial interface

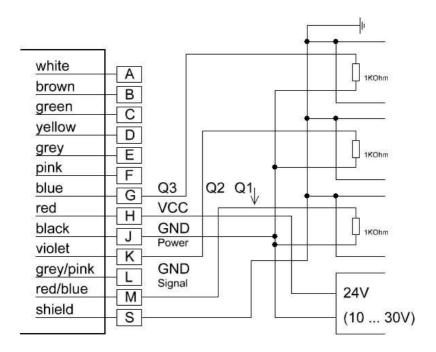


Figure 10: Wiring of switching outputs Q1, Q2, Q3

A load resistance of > 150 Ohm (30 V max. operating voltage: 0.2 A max. load current) must be switched against $\text{GND}_{\text{Power}}$ at the switching output. It is essential that the load current of 0.2 A is not exceeded.

Page 32 ASTECH GmbH

Q1/Q2/Q3 parameterizes the behavior of the switching outputs.

Parameterization covers the beginning w of the measurement range, i.e. the point where the output will switch, the length x of the measurement range, the hysteresis y and the logic behavior z

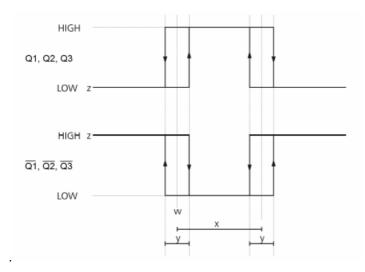


Figure 11: Behavior and parameters of the switching outputs

Variable	Description	Specification
w	Switching threshold	32 bits integer
х	Switching range	32 bits integer
у	Switching hysteresis	32 bits integer y ≥ 0
Z	Switching status	z = 0 or 1

The LDM51 does not check the settings of Q1, Q2 and/or Q3 for plausibility

5.8 QA - Analog output

The analog output enables the normed, analog transmission of distance data across large distances using a two-wire line. The current of 4 to 20 mA impressed in the line is proportional to the measured distance within an adjustable distance interval. Parameterization is done via the serial interface.

Properties of the analog output:

- 4 mA ... 20 mA
- Indication in case of an error: 3 mA or 21 mA (selectable via the parameter SE)
- Resolution: 12 bit DA-converter
- Load: 100 Ohm ≤ R ≤ 500 Ohm/0,5W

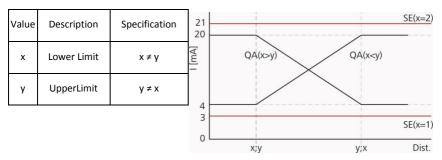


Figure 12: Signal diagram of LDM51 analog output

The value of output current (mA) is calculated as follows:

$$x < y$$
 $QA[mA] = 4 mA + 16 * \frac{Dist.-x}{y-x} * mA$
 $x > y$ $QA[mA] = 20 mA + 16 * \frac{Dist.-x}{x-y} * mA$

Figure 13: Behavior of analog output

The LDM51 does not check the QA settings for plausibility. The user is responsible for correct parameterization.

Page 34 ASTECH GmbH

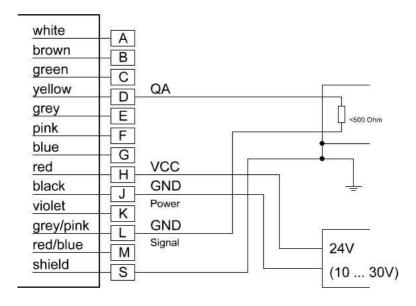


Figure 14: Wiring analog output QA of LDM51

Where current/ voltage is to be converted, a load resistance of $100 \text{ ohms} < R < 500 \text{ ohms}/\ 0.5 \text{ W}$ is to be switched between current output QA and GND.

5.9 TRI + TRO Trigger

Trigger function

The LDM52 Trigger could be used as input or output

Trigger input / external trigger function:

- External trigger signal will be sent → start of measurement DM in accordance with parameter TRI
- 2. Trigger output/ e.g. connection between 2 LDM51

The output trigger signal of the 1. LDM51 (parameterized with TRO) start a single measurement DM of the second LDM51 (parameterized with TRO)

Differences between trigger input and trigger output

Important is the parameter x of TRI and TRO.

TRI x > 0 / TRO x = 0 Trigger input

The measurement starts after an external trigger

impulse

TRI x = 0 / TRO x > 0 Trigger output

The LDM51 sends a trigger impulse to the second

device

The parameterization of the trigger connection is carried out via the serial interface or the internal display.

For the trigger function may only activated TRI or TRO. A concurrent use of TRI and TRO is not possible.

→ Output of warning information

Voltage level fort he trigger signals

Low-Pegel 0 V to 1,5 V High-Pegel 3 V to 30 V Threshold 2.25 V Hysteresis 0.1 V

Page 36 ASTECH GmbH

TRI - Trigger input

The parameterization of trigger input will be set with command TRI.

Χ	edge	Parameterized the edge of trigger signal		
		0	Rising edge	
		1	Falling edge	
		2	Every edge	
Υ	delav	Parameterized t	he time up to the measurement in ms	

Query: TRI
Set: TRI x y
Value range

parameter x:

Value range parameter y:

0 ms to 60000 ms

0, 1, 2

Standard: 00

Figure 15: Wiring of trigger input

TRO - Trigger output

The parameterization of trigger output will be set with command TRO.

X	edge	Parameterized the edge of trigger signal		
		0	Rising edge	
		1	Falling edge	
		2	Every edge	

y delay Parameterized the time (delay) up to the measurement

in ms

0, 1, 2

Query: TRO
Set: TRO x y
Value range

parameter x:

Value range 0 ms to 60000 ms, parameter y: disabled at 0 ms

Standard: 00

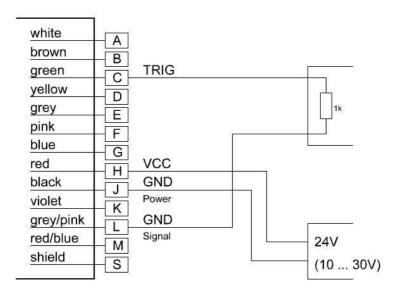


Figure 16: Wiring of trigger output

Page 38 ASTECH GmbH

6 Start-up LDM51

6.1 Preparation of start-up

- Remove the packaging of the LDM51
- Check scope of delivery for completeness
- Check device and accessories for damages
- Check connections and cables for damages

6.2 Start-up checklist

The following table shows an example procedure for commissioning the LDM51. The table raises no claim of being complete. The application-specific wiring is required. The user is responsible for the installation of the application-specific wiring.

Table 6: Start-up LDM51

Nr.	Work step
1	Unpack the LDM51 and check for damages
2	Mount the LDM51 at the target location (with 2 screws through the side face or 3 screws through the bottom (4.4) Roughly direct it at the target surface
3	Plug and firmly screw on the interface cable in the de-energized condition.
4	Connect and firmly screw on the Profibus and SSI connections(optional)
5	Wire the open cable end. Energize. Green status LED must light up
6	As soon as STATUS LED is green, the red laser beam will be visible. Precondition: AS DT (default value). Mechanical fine adjustment can be executed.
7	Parameterize the LDM51 via the menu navigation on the display. Alternatively parameterize the device using a terminal program.
8	Activate the distance measurement mode (e.g. DT)

Nr. Work step

9 Start the distance measurement (laser is switched on).
Measurement output and Status- LED must be checked. Stop the distance measurement mode.

Alternative: Start measurement via Profibus.

The SSI measurement mode is to be defined in the AUTOSTART AS command

10 Final visual check

Before switching on the power supply make sure that all cable ends are protected against short circuits!

Connect cable terminals as required for the particular operating mode. To prevent short circuits, seal unused cable ends!

For starting-up, a PC with RS-232 or RS-422 data interface and a terminal program are required. We recommend the Windows program LDMTool Version 4.8 or higher (see Figure 17 Program LDMTool).

RS-232 to USB converter are available optionally.

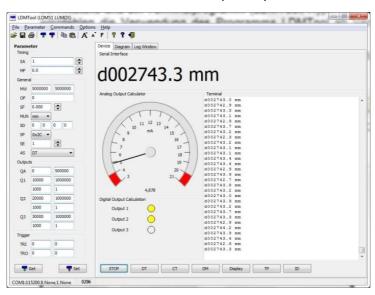


Figure 17: Program LDMTool

Page 40 ASTECH GmbH

6.3 Ranges and accuracies

The tables below show the ranges and accuracies in relation to the target surface for outdoor applications. For indoor applications the measuring range could be larger. The measuring range depends on target reflectivity, stray light, measuring frequency and environmental conditions.

Table 7: Ranges and accuracies

Target	Measuring frequency	Measuring range	Maximum accuracy
white, matt,	Variable	15 cm 100 m	± 1 mm
reflectivity	20 Hz	15 cm 40 m	± 1 mm
approx.	50 Hz	50 cm 35 m	± 2,5 mm
80 %	100 Hz	50 cm 30 m	± 2,5 mm
grey, matt,	Variable	15 cm 50 m	± 1 mm
reflectivity	20 Hz	15 cm 25 m	± 1 mm
approx.	50 Hz	50 cm 18 m	± 2,5 mm
13 %	100 Hz	50 cm 10 m	± 2,5 mm
	Variable	15 cm 20 m	± 1 mm
black, matt,	20 Hz	15 cm 10 m	± 1 mm
reflectivity approx. 6 %	50 Hz	50 cm 10 m	± 2,5 mm
арргол. о 70	100 Hz	50 cm 10 m	± 2,5 mm
- 6	Variable	50 cm 100 m	± 1 mm
Reflective	20 Hz	50 cm 100 m	± 1 mm
tape 3M 3279 special	50 Hz	50 cm 100 m	± 2,5 mm
3273 Special	100 Hz	50 cm 100 m	± 2,5 mm
	Variabele	50 m 500 m	± 1 mm
Reflective	20 Hz	50 m 450 m	± 1 mm
tape Oralite 5200	50 Hz	50 m 300 m	± 2,5 mm
3200	100 Hz	50 m 250 m	± 2,5 mm

6.4 Measurement involving moving targets

Where measurements involve a moving object or the LDM51 is moved during measuring, this will have an impact on the accuracy of the measured value.

This must be observed particularly when calculating average values (parameter SA – Average value).

The speed of the moving object may be 20 m/s at the highest.

Measurement jumps of > 30cm and/or considerable changes in the reflectivity of the target surface can prolong the measurement period.

In case of a fixed measuring frequency (parameter MF – Measuring frequency [Hz]), this may result in no measured value being generated within the predefined time. A warning or error message will be displayed instead.

Page 42 ASTECH GmbH

7 Description of commands

7.1 Overview of commands

Table 8: Overview of commands

Command- Class	Command	Description	Standard(s)	Range(s)
Operation Mode	DM	Individual distance measurement	-	-
	DT	Distance tracking	-	-
	СТ	Continuous tracking	-	-
Status	TP	Internal temperature in °C	-	-
	PA	Output of a parameter list	-	-
Identificatio n	ID	Identification	-	-
	ID?	Online help	-	-
Setup Parameter	PR	Resetting parameters to factory settings	-	Not included: BR, RS, SB, SSI, PB
	SAx	Average value	1	1 50
	MFx	Measuring frequency in Hz	0	0.0 100.0
	MWx y	Measurement window	x = -5000000 y = 5000000	± float 32 ± float 32
	MUNx	Unit of the measured value	mm	mm, cm, dm, m, in/8, in/16, in, ft, yd

Command- Class	Command	Description	Standard(s)	Range(s)
	SFx	Scale factor	0	-10.000 10.000
	OFx	Distance offset	0	-5000000 5000000
	SDw x y z	Data format of the serial interface ouput	0, 0, 0, 0	Parameter w: 0 5 x,y,z: 0 oder 1
	BRx	Baud rate	115200	600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 56000, 57600, 115200, 128000, 230400, 256000
	SBx	Stop bit of the serial output	1.0	0.5 / 1.0 / 1.5 / 2.0
	RSx	Selection of the serial interface	232	232 / 422 / 485
	ASx	Autostart	5	1 24
	TEnn	Terminator for the output of measured values	1	1 10
	SEx	Behavior of outputs in case of faulty measurements	1	0, 1 oder 2
	SPx	Seperator for parameters	1	1 5
	НЕх у	Switching threshold for switching the heating on and off	4 10	-40 40 (integer) (Fehler! Verweisquelle konnte icht gefunden werden.)
	Q1w x y z	Q1 switch output with switching threshold, switching range, Swichting hysteresis and State level	0 100000 2500 1	32-Bit-Interger 32-Bit-Interger 32-Bit-Interger y≥0 0 or 1

Page 44 ASTECH GmbH

Command- Class	Command	Description	Standard(s)	Range(s)
	Q2w x y z	Analogous to Q1w x y z	-	-
	Q3w x y z	Analogous to Q1w x y z	-	-
	QAx y	Analog output with lower and upper limit	1 100000	-5000000 5000000 -5000000 5000000
	PB	Setting the Profibus parameter	-	-
	TRI x y	Parameters of trigger input	0	0, 1, 2 (edge) 0 60000 (delay in ms)
	TRO x y	Parameters of trigger output	0 0	0, 1, 2
Additional Commands	DF	Turns off the OLED display	-	-
	DN	Turns on the OLED display	-	-
	LF	Deactivates laser diode	-	-
	LN	Activates laser diode	-	-
	SDT	Deactivates tracking modes	-	-
	SH	Switches off heating unitl restart	-	-
	DR	Executes restart (no reset of parameters)	-	-

7.2 General information

The LDM51 is parameterized using the serial interface or the display. Precondition for programming via serial interface connection provided by a terminal program (e.g. LDMTool (REF) or Hyperterm).

The set paramters are stored in an EEPROM. The last entered data will be available upon restarting.

Retrieval of parameters:

Input PARAMETER < ENTER>

Setting of Parameters:

Input PARAMETER VARIABLE < ENTER>

The variables are described with the individual paramters.

Starting a measurement (operating modes)

Input COMMAND <ENTER>

Stopping a measurement <ESC>

 $\langle ESC \rangle = (0x1B)$

Entering distances

Always in 0,1 mm(100 μ m)

Whenever an incorrect or incomplete command is entered, the following responses are shown:

? The input does not contain any parameter

or command

figure/parameterization

Page 46 ASTECH GmbH

7.3 Transmission protocol

- Interface settings: asynchronous, 8 data bits, no parity,1 stop bit
- Transmission protocol format/syntax: 7-bit-ASCII
- Commands are case-insensitive (NO differentiation between lower and upper case)
- Decimal seperator in the output of figures is dot "." (0x2E)
- The terminator of a command (sending command) is the enter key (0x0D, 0x0A) or Carriage Return (0x0D) or Line Feed (0x0A)
- Where parameters have several values, they are seperated by a space (0x20)
- The response to commands with parameters is the respective command including the parameters
- The response to commands without paramters ist he respective command including the current parameter
- The response to commands with parameters outside of the valid value range is the respective command including the current parameters
- The response to unknown commands and faulty parameter formats is a "?" (0x3F)

7.4 Operating modes

DM – Individual distance measurement

The LDM51 will perform exactly one measurement and then wait for new instructions.

The duration of the measurement depends on the number of preset measuring values SA and the preset measuring frequency MF.

Typical parameter settings:

MFO, SA1, DM

Execute single measurement, allowing for a sufficient period of time as needed to reliably (accuracy < 1mm) determine the distance to a static (during the measurement) target object.

MFx, SA1, DM

Execute single measurement, allowing for a period of time of maximally 1 / x seconds to reliably (accuracy < 1 mm) determine the distance to a static (during the measurement) target object.

DT - Continuous distance measurement (distance tracking)

The LDM51 performs a continuous measurement.

The measurement can be interrupted by a command:

Display STOP

RS-232/422/485 Escape = 0x1B

The output frequency of the measured values depends on the selected parameters MF and SA.

The DT mode works with high measuring stability in the collection of the measured values, even in case of beam interruptions and discontinuous motion sequences of the target.

Example response (setting SD 0):

Page 48 ASTECH GmbH

D 0002.935 21.1 57.8

Output format = decimal (D)
Distance = 2,935 m
Signal quality = 21.1
Temperature = 57.8 °C

CT – Continuous tracking

The LDM51 performs an uninterrupted continuous measurement, adjusting the laser parameters (unambiguous ranges) in relation to the target only every 6 seconds or when an obvious distance measurement error has occurred.

The measuring accuracy for frequencies > 20 Hz is higher in the mode CT as in the operation mode DT.

Areas of application:

- Quick measurements on hot surfaces.
- Tracking of continuously quickly moving targets (z.B. crab [crane], vehicle)
- Scanning of static targets

Distance jumps or laser beam interruptions can result in faulty measurements. The warning w1912 is issued.

7.5 Identification commands

ID - recognition

When entering the command ID, the LDM51 will respond by displaying the manufacturer's data in the following order: Device type, serial number, manufacturer's part number, firmware version, time stamp.

Example:

LDM51 130007 012890-001-22 V5.13.1021 13-10-23.10:10

ID? — Online help

By entering the command ID? the user will obtain an overview of all available operations and parameters described in the following sections.

```
Command list: Command must start with correct beginning, e.g.: 'DNC' = "ON 2".

(*** (***) declares the option of adding a positive integer to change the parameter.

(***) declares the option of adding a notager to change the parameter.

(***) declares the option of adding a floating-point number to change the parameter.

(***) declares the option of adding a floating-point number to change the parameter.

(***) declares the option of adding a floating-point number to change the parameter.

(***) declares the option of adding a floating-point number to change the parameter.

(***) declares the option of adding a hoolean value (0 = faise, or 1 = true) to change the parameter.

****]

****]

***]

****]

***]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

***]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

***]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

***]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

****]

*
```

Figure 18: Output of the ID? command

Page 50 ASTECH GmbH

7.6 Status commands

TP - internal temperature

The LDM51 outputs its internal device temperature in °C.

The internal temperature is about 10 kelvins higher than the ambient temperature.

When the specified temperature range is exceeded or fallen short of, the warning w1904 or w1905 will be generated cyclically. Measurements will not be possible until the temperature has returned to a point within the specified range.

Example: 26°C

The LDM51 user must make sure that the specified ambient temperature (operating temperature) is adhered to. The LDM51 will not be switched off automatically when the temperature is above or below the defined temperature range.

PA - Parameter setting

A list of all parameters is output via the serial interface.

```
Baudrate of serial port [BR]:
                                                           115200
Stopbits of serial port [SB]:
Serial port mode (RS232/422/485) [RS]:
                                                           232
Average [SA]:
Measurement frequency [MF]:
                                                           0.0
Minimum distance from target in 'mm / 10' [MW]:
                                                           -5000000
Maximum distance from target in 'mm / 10' [MW]:
                                                          5000000
Offset in 'mm / 10' [OF]:
Parametrization of switching output Q1 [Q1]:
                                                          0, 1000000, 2500, 0
                                                          0, 1000000, 2500, 0
Parametrization of switching output Q2 [Q2]:
Parametrization of switching output Q3 [Q3]:
                                                          0, 1000000, 2500, 0
Parametrization of the analog switching output QA [QA]: 0, 1000000
Unit for the distances [MUN]:
                                                           mm
Trigger (input) [TRI]:
                                                           0,0
Trigger (output) [TRO]:
Autostart commands [AS]:
Output format [SD]:
                                                           0 0 0 0
                                                           0x0D0A
Terminator [TE]:
                                                           0.000
Scale factor [SF]:
Error mode [SE]:
Separator [SP]:
                                                           0x2C
Standard tracking mode from menu [MCT]:
```

Figure 19: Output of the PA command

7.7 Command for parameter setup

Parameters are set via serial interface. The command will be transferred to the LDM51 with the final character (0x0D) or Carriage Return (0x0D) or Line Feed (0x0A). If commands have only one parameter, the parameter will be inserted directly or separated by a blank space (0x20). If commands have several parameters, these parameters will be separated by a blank space (0x20).

AS - Auto start function

The autostart function defines the behavior of the LDM51 after a cold boot. After the connection to the supply voltage and the internal start-up routine the LDM51 will automatically execute the command and send the data to the available outputs. A figure from the table below must be entered (see Table 9: Auto start parameters).

Query: AS Set: ASx

Value range 1 ... 24 (see table below)

parameter x:

Standard: 5

Table 9: Auto start parameters

Value x	Command	Meaning
1	ID	Output of device identification
2	ID?	Output of command list
3	TP	Output of internal device temperature
4	DM	Start of individual measurement
5	DT	Start of continuous measurement
6	СТ	Start of quick continuous measurement
7	DF	Display is deactivated
8	DF ID	Display is deactivated + Output of device identification
9	DF TP	Display is deactivated + output of internal device temperature
10	DF DM	Display is deactivated + start of individual

Page 52 ASTECH GmbH

Value x	Command	Meaning measurement
11	DF DT	Display is deactivated + start of continuous measurement
12	DF CT	Display is deactivated + start of uninterrupted continuous measurement
Only for	gauge-types with	h heating(temperature range -40 °C +60 °C)
13	SH	Heating is deactivated
14	SH ID	Heating is deactivated + output of device identification
15	SH TP	Heating is deactivated + output of internal device temperature
16	SH DM	Heating is deactivated + start of individual measurement
17	SH DT	Heating is deactivated + start of continuous measurement
18	SH CT	Heating is deactivated + start of uninterrupted continuous measurement
19	SH DF	Heating is deactivated + Display is deactivated
20	SH DF ID	Heating is deactivated + Display is deactivated +output of device identification
21	SH DF TP	Heating is deactivated + Display is deactivated + output of the internal device temperature
22	SH DF DM	Heating is deactivated + Display is deactivated + start of individual measurement
23	SH DF DT	Heating is deactivated + Display is deactivated + start of continuous measurement
24	SH DF CT	Heating is deactivated + Display is deactivated + Start of uninterrupted continuous measurement

Depending on the measurement mode used, it takes max. 6 s from applying the supply voltage to the point where the first measured value is put out.

BR - Baud rate

BR enables the adjustment of the serial baud rate x.

As soon as a new baud rate is set, the device will start communicating with the new baud rate.

BR will not be modified upon a parameter reset via (PR)

Query: BR Set: BRx

Range of 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400,

parameter x: 56000, 57600, 115200, 128000, 230400, 256000

Standard: 115200

SB – Stop bit oft he serial output

Set the parameter of the stop bit for serial data transmission

Query: SB Set: SBx

Range of

0.5 / 1.0 / 1.5 / 2.0

parameter x:

Standard: 1.0

RS – Serial port

Selection of the serial interface to be used for communication.

Query: RS Set: RSx

Range for

232 / 422 / 485

parameter x:

Standard: 232

Page 54 ASTECH GmbH

PR – Parameter reset

All parameters are reset to factory settings, except the baud rate BR, the serial port RS, the stop bits SB, the SSI interface parameters SSI and the Profibus interface parameters PB! We do not recommend using this command. Afterwards the device must be programmed new (auto start, scaling analogue and output etc.).

Example:

```
Parameters set to firmware defaults.
                                                             115200
Baudrate of serial port [BR]:
Stopbits of serial port [SB]:
                                                            232
Serial port mode (RS232/422/485) [RS]:
Average [SA]:
Measurement frequency [MF]:
Minimum distance from target in 'mm / 10' [MW]:
Maximum distance from target in 'mm / 10' [MW]:
                                                            -5000000
                                                           5000000
Offset in 'mm / 10' [OF]:
                                                            0, 1000000, 2500, 0
Parametrization of switching output Q1 [Q1]:
Parametrization of switching output 02 [02]:
                                                           0, 1000000, 2500, 0
                                                            0, 1000000, 2500, 0
Parametrization of switching output Q3 [Q3]:
Parametrization of the analog switching output QA [QA]: 0, 1000000
Unit for the distances [MUN]:
Trigger (input) [TRI]:
                                                             0, 0
Trigger (output) [TRO]:
                                                             0.0
Autostart commands [AS]:
                                                             DT
Output format [SD]:
                                                             0000
                                                             0x0D0A
Terminator [TE]:
Scale factor [SF]:
                                                             0.000
Error mode [SE]:
Separator [SP]:
                                                             0x2C
Standard tracking mode from menu [MCT]:
```

Figure 20: Parameter reset with PR command

DR - Release of cold start

DR carries out a cold start of the LDM51 and actually simulates an interruption of the supply voltage. This command is useful for a test if "Autostart"-command was changed for example.

MW – Measurement window

Parameterizes the scope of a measurement window by start x and end y. Only measured values within the measurement window will be put out.

For example, the measurement window can be used to:

- Eliminate interfering objects before or behind a measurement range
- Define a measurement range

If there is no target object within the defined measurement window, an error message will be generated cyclically:

E1203 Target with unsuitable reflectivity

E1207 A target before or behind the measurement window is recognized

Query: MW

Set: MWx y

Range of parameter x: Resolution: 0.1 mm
Range of parameter y: Resolution: 0.1 mm

The LDM51 does not check the set measurement window for plausibility. The user is responsible for correct parameterization!

MUN - Unit of the measured value

MUNx enables the definition of a unit for the output value. It is shown together with the measured value. In ordert o use MUN, SF 0 must be set.

Query: MUN

Set: MUNx

Range of parameter x: mm, cm, dm, m, in/8, in/16, in ft, yd

Standard: mm

MF - Measuring frequency [Hz]

MF parameterizes the number x of the measured value outputs per second.

When a value x outside of the measurement range is entered, the lowest or highest permissible MF value will automatically be set.

Entered value $\langle x \rightarrow MF 0.0 \rangle$

Entered value > $x \rightarrow MF 100.0$

Query: MF

Page 56 ASTECH GmbH

Set: MFx

Range of parameter x: 0.0 ... 100.0 (Hz); Resolution: 0.1

Standard: 0

MF 0

Automatic measurement. The output frequency ranges between 0.3 Hz and 10 Hz in most cases. Essential factors concerning the measurement period are, among others, the reflectivity of the target surface and the environmental conditions (e.g. light, fog, rain).

OF - Offset

OF parameterizes a user specific offset x that is added to the measured value. It s entered in 0.1 mm.

Query: OF Set: OFx

Range of parameter x: -5000000 ... 5000000

Standard: 0

The LDM51 does not check the set offset for plausibility. The user is responsible for correct parameterization!

SF - Scale factor

SFx defines a factor by which the output value is multiplied.

Query: SF Set: SFx

Range of parameter

-10000 ... 10000

x:

Standard: 0

At SF \neq 0 the parameter MUN is ineffective.

At SF = 0 the unit defined by MUN becomes effective.

SA - Average value

SA parameterizes the number x of the individual measured values to be averaged for measured value output. SA directly correlates with the measuring frequency MF (see page 56):

Output time in seconds = SA / MF

or

Output frequency in Hz = MF / SA

Query: SA

Set: Sax

Range of Parameter

1 ... 50; resolution: 1

x:

Standard: 1

The spread of the measured values can be reduced by determining average values.

$$\sigma_{SA} = \frac{\sigma_1}{\sqrt{SA}}$$

The following applies:

 σ_{SA} Dispersion after mean value calculation

 σ_1 Dispersion of single measured value (approx. 5 cm)

SA Number of averaged single measurements

Table 10: Scattering of distance measurement

f [Hz] = MF	SA	Output frequency [Hz]	σ_{SA} [mm]
20	1	20	± 1,0
20	10	2	± 0,3

Page 58 ASTECH GmbH

SE - Error Mode

SE sets the behavior x of switching outputs Q1 and Q2 and of analogue output QA in case of faulty measurements as well as the state after carrying out a single distance measurement. The switching behavior of Q1 and Q2 depends on parameter z.

Query: SE Set: SEx

Range of 0, 1, 2 (Table 11 : Error Mode Sex, meaning of

parameter x: parameter x)

Standard: 1

Table 11: Error Mode Sex, meaning of parameter x

x	Q1, Q2, Q3 (z=0)	Q1, Q2, Q3 (z=1)	QA
0	Last value	Last value	Last value
1	High	Low	3 mA
2	Low	High	21 mA

There is no plausibility check of the preset error mode. The user itself is responsible for correct parameter setting!

SP – Separator for parameters

Output values are separated by the character SP.

Query: SP Set: SPx

Range of parameter x:

0 ... 5

Standard: 1

x	1	2	3	4	5
Hexcode	0x2C	0x3B	0x20	0x2F	0x09
Symbol	Komma	Semicolon	Space	Slash	Tabulator

HE - Heating adjustment

The parameter HE defines the switching thresholds for switching the heating element on and off. The command is enabled only where the device is actually equipped with a heating element.

Query: HE
Set: HEx y

Range of parameter x: -40 ... 40 (integer)
Range of parameter y: -40 ... 40 (integer)

Standard: HE4 10

For switching the heating on or off, the internal measured temperature is compared to the set parameters.

Internal temperature < x (HeatON) Heating is switched on.

Interne temperature > y (HeatOFF) Heating is switched off.

Please observe the following $x (HeatON) \le y (HeatOFF)$

when setting the parameterization

MCT – Output/modification of the operating mode when starting a measurement using the display

When starting a continuous measurement using the integrated display, you need to define if the LDM51 should measure based on the operating mode DT or CT.

The operating mode is selected via the command MCT.

When starting a measurement using the display, the predefined operating mode will be applied as a rule.

When a measurement is started using a communication program or PLC, the command DT or CT will determine the type of measurement.

Q1/Q2/Q3 - Switching output

Q1/Q2/Q3 parameterizes the behavior of the switching outputs:

Page 60 ASTECH GmbH

w begin of measurement range within the output swichtes

x length of measurement range within the output switches

y hysteresis and

z logical behavior

Query: Q1 or Q2 or Q3

Set: Q1w x y z / Q2w x y z / Q3w x y z

Switching threshold w: 32-Bit-Integer Switching range x: 32-Bit-Integer

Switching hysteresis y: 32-Bit-Integer; $y \ge 0$

Switching state z: 0 or 1

Standard: 0 100000 2500 1

The LDM51 does not check the settings of Q1, Q2 and/or Q3 for plausibility

QA - Analog output

QA sets the behavior of the analog output QA (see chapter 5.8).

The lower limit x and the upper limit y of the 4 to 20 mA current range are controlled by QA. The lower limit may be smaller or may be larger than the upper limit. Accordingly the current range is reserved.

Settings of equal limits will be ignored and not stored.

Query: QA Set: QAx y

Range of parameter x: -5000000 ... 5000000

Range of parameter y: -5000000 ... 5000000

Standard: 0 1000 (0 m ... 10 m)

The measurement window MW also applies to the analog output.

The LDM51 does not check the QA settings for plausibility. The user is responsible for correct parameterization.

SD - Data format of the serial interface output

SD parameterizes the output format and the possible output values. Possible output values are the distance, the signal quality, the temperature and the switching ouputs (active / inactive).

Query: SD

Set: SDw x y z

Range of parameter w: 0 ... 5

Range of parameters 0 or 1 (see

x,y,z: Table 13 : Output format of parameters x y z)

Standard: 0000

Table 12: Output format of parameter w

Parameter w	Output format	Separators between the values	Unit of measure SF 0 + MUNx
0	Decimal	1 separator	Unit
1	Decimal	None	None
2	Hexadecimal floating point IEEE- 754	None	None
3	Hexadecimal	None	None
4	Binary	None	None
5	SSI and switching outputs only	None	None

Page 62 ASTECH GmbH

Table 13: Output format of parameters x y z

Parameter	Value	Signal quality	Temperature	Switching outputs
x	0	Off		
X	1	On		
У	0		Off	
У	1		On	
Z	0			Off
Z	1			On

Explanation binary output format

Distance value:

```
4 Byte, MSB = Bit 31
```

MSB of Byte 3 always 1

MSB of Byte 2, 1 and 0 always 0

Measurement data of each Byte = Bit 6 ... Bit 0

Coding: Two's complement

Signal:

2 Byte

MSB = Bit 15

MSB of Byte 1 always 0

Daten = Bit 6 ... Bit 0

No sign bit

Maximum value: 16383 (14 Bit Data)

Temperature:

2 Byte

MSB = Bit 15

Sign bit= Bit 14

MSB of Byte 1 and 0 always 0

Data = Bit 6 ... Bit 0

Binary format of switching outputs Q1, Q2, Q3:

1 Byte

MSB = Bit 7 (always 0)

Q1 = Bit 2

Q2 = Bit 1

Q3 = Bit 0

1 = switching output on (active)

0 = switching output off

Bit	7	6	5	4	3	2	1	0
	0	0	0	0	0	1	0	1
	MSB					Q1	Q2	Q3
	= 0					on	off	on

TE - Terminator of the serial interface

TE is used to set the terminator for the output of measured values in the ASCII format (also see command SD).

Query: TE

Set: TEnn

Range of parameter x: 1 ... 10; (Table 14)

Standard: 1

Table 14: Termination character(s) TEx, meaning of parameter x

x Hexcode	1 0x0D 0x0A	2 0x0D	3 0x0A	4 0x02	5 0x03	6 0x09	7 0x20	8 0x2C	9 0x3A	10 0x3B
Description	CR LF	CR	LF	STX	ETX	Tabu- lator	Space	Komma	Colon	Semi- colon

When an invalid character is entered, it will not be set. The current separator will be kept instead.

Page 64 ASTECH GmbH

PB – Setting the Profibus parameters

PB parameterizes the availability of Profibus interface.

Query: PB Set: PBx

Range of parameter x: 0 (disabled), 1 (enabled)

Standard: 0

For LDM51 types with Profibus interface the default value is PB1 (Profibus enabled).

If LDM51 types with Profibus interface should be used via serial interface only, the Profibus parameter PB must be disabled with command:

PB 0

SSA - Profibus slave address

With parameter SSA the Profibus slave address can be set.

It could be set via LDM51 keys or via service program.

Query: SSA
Set: SSAx
Range of parameter x: 0 ... 126

Standard: 4

SSI - Setting the SSI parameters

SSI defines the Synchronous Serial Interface (see chapter REF)

Query: SSI Set: SSIx

Range of

0 ... 4 (see table below)

parameter x:

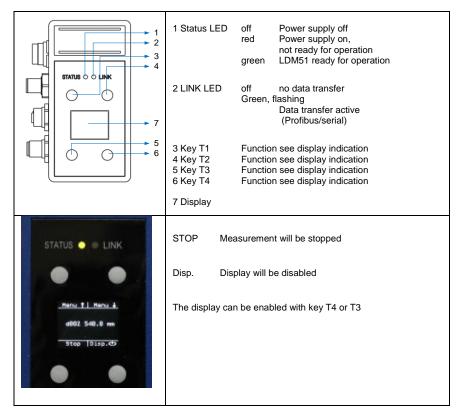
Standard: 0

Wert x	Beschreibung
0	SSI aus (deaktiviert)

1	SSI aktiv / 24 bit / binär
2	SSI aktiv / 24 bit / gray
3	SSI aktiv / 25 bit / binär / MSB = Errorbit
4	SSI aktiv / 25 bit / gray / MSB = Errorbit

Page 66 ASTECH GmbH

7.8 Direct controlling of the LDM51


The LDM51 can directly be parameterized and set for measurements without an additional PC. Precondition is that it is supplied with voltage through the interface cable.

The LDM51 is ready for operation when the green STATUS LED is lit.

The individual menu items scan be selected using 4 membrane keys, each 2 above and below the OLED display. The user language is English.

The display can be deactivated during the measurement.

It can be switched on again by pressing key T3 or T4.

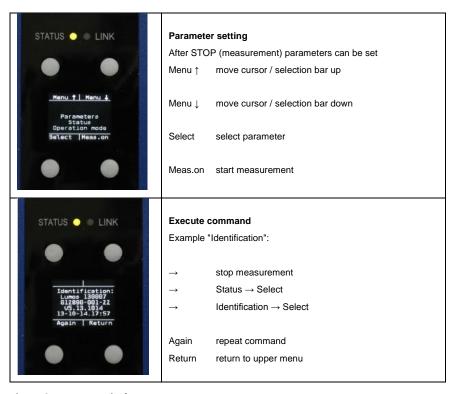


Figure 21: LDM51 Display

Page 68 ASTECH GmbH

LDM51 Lumos Manual Profibus

8 Profibus

8.1 ID Number

LDM51P is registrated under ID number 0E36 (HEX) by PROFIBUS Nutzerorganisation e.V.

8.2 Connection conditions

LDM51P can be connected to any Profibus-DP structure. The connected Profibus-DP master has to be able to send a parameterization.

The master configuration tool (usually configuration software) must support the parameters of the GSD file.

8.3 GSD-File

The GSD-File is named ASTECH_LDM51P.GSD.

It is part of the ASTECH CD.

The current GSD is for downloading available under the following address:

http://astech.de/en/download.html

The inclusion of the GSD file into the master configuration tool should be carried out to the documentation of the configuration tool.

8.4 Slave address

The Profibus slave address can be set under consideration of the other Profibus slaves in the range of 0...126.

The address can be set with command SSAx via the serial interface or via the LDM51P keys and the GUI (graphical user interface).

The documentation of the master configuration tool will inform how the slave address has to be changed via the master configuration tool. The default address is 4. The slave address will be stored permanently in the EEPROM and will be available even after power failure.

If several slaves are operated on a Profibus master they must have different addresses and have to connect one by one.

8.5 Bus termination

The Profibus termination is to realize externally.

The supply voltage of 5 VDC will be supplied via Profibus OUT. The 5 VDC are isolated galvanically from the power supply (VCC). The maximum load is 100 mA.

8.6 Baud rate

The LDM51 has an automatic baud rate for the following baud rates: 9.6 / 19.2 / 93.75 / 187.5 / 500 kBaud und 1.5 / 3 / 6 / 12 Mbaud.

8.7 Length of segment

The maximum segment length between two Profibus participants depends on the selected baud rate. The following segment length must be observed.

Baud rate	Length of segment
9,6 kBaud 93,75 kBaud	1200 m
187,5 kBaud	1000 m
500 kBaud	400 m
1,5 Mbaud	200 m
3 MBaud 12 MBaud	100 m

Cable type A is strongly recommended for connection to different Profibus units. Cable type A has the following properties:

Characteristic wave impedance	135 Ω 165 Ω
Capacity of the cable	≤ 30 pf/m
Loop resistance	≤ 110 Ω/km
Wire diameter	> 0.64 mm
Wire cross-section	> 0.34 mm²

Page 70 ASTECH GmbH

LDM51 Lumos Manual Profibus

8.8 Profibus interface

The Profibus interface of LDM51P is a standard Profibus-DP V0 interface (local peripherals).

V0 is the version number. The telegrams are byte-oriented. Bytes are also referred to as Octets in Profibus standard standard terminology. From the user's angle, the description can be restricted to a few telegram types:

- Cyclical data exchange telegrams (DataEx)
- Diagnostic telegrams
- Parameter setting telegrams.

The different Profibus-slaves of the same or similar function are described in profiles. The profiles make it easier for the user to use PB slaves having the same function but coming from different suppliers.

For using LDM51P at the Profibus, the encoder profile of the Profibus (order No. 3062 of PNO) is supported.

For this LDM51P serves as linear encoder. Under the encoder profile, LDM51P can work as Class1 or Class2 (recommended) encoder.

All versions are implemented via GSD file. In addition to profile-specific data, the LDM51P provides specific settings which refer to the control of the laser and to diagnostics.

Profile	Class	Functions
Encoder	Class 1	Input only
		Simple diagnostics
		Minimum parameter setting
	Class 2	Input and output (Preset)
		Extended diagnostics
		Extended parameter setting
LDM51	Class 1	See Encoder profile
	Class 2	Additional manufacturer-specific diagnostics and parameter setting

8.9 Configuration data

The configuration of the input and output data can be selected as follows:

Table 15: Configuration data

Mandatory		
Class 1	D1 hex	2 words inputs, consistency
Class 2	F1 hex	2 words of input data,2 words of output data for preset value,consistency
Class 2	D3 hex	4 words inputs, consistency
Class 2	D3 E1 hex	4 words of inut data 2 words of output data for preset value, consistency
Class 2	98 A4 hex	9 bytes of input data5 bytes of output data, consistency
optional		
Class 1	D0 hex	Not realized
Class 2	F0 hex	Not realized

8.10 Cyclical data exchange – input (slave to master)

Position data supplied by LDM51P is signed. The sign can be inverted in the parameter SF (scale factor). The resolution is also defined by SF.

Page 72 ASTECH GmbH

The arrangement of octets in the telegrams conforms to the Profibus (big endian), i.e., the MSB comes first, the LSB comes last.

Octet	Bit	Туре	Output	
1 4		Signed 32	Position data from encoder in 0,1 mm	
Configur	Configuration with 8 byte input and SS mode:			
5 8		Signed 32	Signal level	
Configuration with 9 byte input:				
9		Signed 8	Temperature in °C	

8.11 Cyclical data exchange – Output (master to slave)

The most significant bit in the present value (bit 32) defines the validity of the preset.

Octet	Bit	Туре	Output
1 4		Signed 32	Preset Value
			Normal Mode: MSB = 0 (bit 31)
			Preset Mode: MSB = 1 (bit 31)
Configur	ation wit	h 5 byte outpu	ıt:
5	0	Bit	0:laser off, 1:laser on
	1	Bit	0:normal -1:ext. diagnostics with Exxxx
	2	Bit	0:no diagnostic, 1:Diag. as needed
	3	Bit	0:no OLED-Control,1:OLED-Ctrl active
	4	Bit	0:OLED off, 1:OLED on

The internal offset can be set to a required value by the present.

The offset can be changed by setting bit 31. The following applies:

M _{DataEx}	Value transported on the Profibus in cyclical data exchange			
M_{Laser}	Value measured by the laser			
M_{Offset}	Offset calculated internally			
Cyclical calculation of: $M_{DataFy} = M_{Laser} + M_{Offset}$				

The M_{Offset} value can be written in the LDM51 directly as parameter Octet 32..35 (see 8.6) and can be changed by cyclical data while the system is operating (and the configuration is as required, see 8.3).

If bit 31 of M_{Preset} is set in the cyclical output data, M_{Offset} is updated.

If bit 31 is zero, M_{Offset} is not changed.

The new offset can be read as octets 30...33 in the diagnostic data.

Bit 31 has no particular release function for parameter data; the offset is always adopted.

8.12 Parameter data

At least the following parameters apply to class 1 devices

Table 16: Parameter data class 1 devices

Octet	Bit	Туре	Output
1		byte	Station status (profibus default)
2		byte	wd_fact_1 (watch dog)(profibus default)
3		byte	wd_fact_2 (profibus default)
4		byte	min_tsdr (profibus default)
5 6		word	Ident number (profibus default)
7		byte	group ident (profibus default)
8		byte	spc3 spec (profibus default)
5	0	bool	unused
	1	bool	class 2 functionality on/off
	2	bool	commissioning diagonstic on/off
	3	bool	unused
	4	bool	reserved for future use
	5	bool	unused

Page 74 ASTECH GmbH

LDM51 Lumos Manual Profibus

Octet	Bit	Туре	Output	
	6	bool	unused	
	7	bool	unused	

The following additional parameters apply to class 2 devices:

Table 17: Parameter data class 2 devices

Octet	Bit	Туре	Output
1013		unsigned 32	Unused – Linear Encoder (Measuring units per revolution)
1417		unsigned 32	Unused – linear Encoder (Measuring range in)
1825		Byte(s)	Unused – (reserved for future used)
26	0	bool	Unused
	1	bool	Unused
	23	2 bit number	Error reaction 02 [SEnn] (0:last valid value, 1:min value, 2:max value)
	4	bool	Unused
	57	3 bit number	Measure mode [0:DT, 1:CT, 2:TDM]
27	01	2 bit number	TRI x 0 2
	23	2 bit number	TRO x 0 2
	4	bool	Q1 z
	5	bool	Q2 z
	6	bool	Q3 z
	7	bool	unused
2829		signed 16	TRI y: 0 32767
3031		signed 16	TRO y: 0 32767

Octet	Bit	Туре	Output
3233		unsigned 16	SA x: 0,1 1000
3437		unsigned 32	MF x: 0,0000200,0000
			in 0,0001 steps
3841		unsigned 32	OF -21474836482147483647
4245		signed 32	SF -1000,0001000,000
			in 0,001 steps
4649		signed 32	MW min
			-2147483648 2147483647
5053		signed 32	MW max
			-2147483648 2147483647
5455		unsigned 16	diag time (in 100 ms steps)
5659		signed 32	Q1w -2147483648 2147483647
6063		signed 32	Q1x -2147483648 2147483647
6467		signed 32	Q1y -2147483648 2147483647
6871		signed 32	Q2w -2147483648 2147483647
7275		signed 32	Q2x -2147483648 2147483647
7679		signed 32	Q2y -2147483648 2147483647
8083		signed 32	Q3w -2147483648 2147483647
8487		signed 32	Q3x -2147483648 2147483647
8891		signed 32	Q3y -2147483648 2147483647
9295		signed 32	QAx -2147483648 2147483647
9699		signed 32	QAy -2147483648 2147483647

As LDM51 is a linear encoder and measures absolute distances, the parameters

- "code sequence",
- "scaling function control",
- "Measuring units per revolution" and

Page 76 ASTECH GmbH

"Measuring range in measuring units" of the encoder profile are ignored.

8.13 Diagnostic data

Table 18: Profibus diagnostic data

Class 2 functionality	Commissioning diagnostic	Diagnostic Information
-	0	6 byte Normal diagnostic
0	1	16 byte Class 1 diagnostic
1	1	61 byte Class 2 diagnostic

Octet	Bit	Туре	Output
			Profibus default diagnostic
1		Byte	Diag state 1
2		Byte	Diag state 2
3		Byte	Diag state 3
4		Byte	Master address
56		Word	Slave ident
			Class 1 diagnostic
7		Byte	Extended diag. header, length (class 1:0A, class 2:37)
8		Byte	Alarms – unused
9	0	Bool	Unused
	1	Bool	Class 2 functionality on/off
	2	Bool	Commissioning diagnostic on/off
	3	Bool	Unused
	4	Bool	Reserved for future use
	5	Bool	Unused
	6	Bool	Unused

Octet	Bit	Туре	Output
	7	Bool	Unused
10		Byte	Encoder type (=7 absolute linear encoder)
1114		Unsigned 32	Signle turn resolution 100000nm = 0,1 mm
1516		Unsigned 32	No of distinguishable revolutions - unused (=0)
			Class 2 diagnostic
17	0	Bool	E1001 "unecpected error"
	1	Bool	E1002 "mail-box error"
	2	Bool	E1003 "mutex error"
	37	Bool	-
1819	0	Bool	E1101 "pc usart error"
	1	Bool	E1102 "pc usart error"
	2	Bool	E1103 "laser usart error"
	3	Bool	E1104 "laser usart error"
	4	Bool	E1105 "laser usart error"
	5	Bool	E1106 "spi error"
	6	Bool	E1107 "spi error"
	7	Bool	E1108 "i2c error"
	8	Bool	E1109 "i2c error"
	9	Bool	E1110 "ssi error"
	10	Bool	E1111 "ssi error"
	11	Bool	E1112 "profibus error"
	12	Bool	E1113 "profibus error"
	13	Bool	E1201 "no destination found"
	14	Bool	E1202 "calibration error"

Page 78 ASTECH GmbH

Octet	Bit	Туре	Output
	15	Bool	E1203 "bad surface"
2021	0	Bool	E1204 "measure aborted"
	1	Bool	E1205 "measure running"
	2	Bool	E1206 "dest. too bright"
	3	Bool	E1207 "destination not in window"
	4	Bool	E1208 "parameter error"
	5	Bool	E1209 "no answer from laser"
	6	Bool	W1901 "reboot"
	7	Bool	W1902 "supply outer limit"
	8	Bool	W1903 "supply outer limit"
	9	Bool	W1904 "temp outer limit"
	10	Bool	W1905 "temp outer limit"
	11	Bool	W1906 "heating active"
	12	Bool	E1910 "measure time out"
	13	Bool	W1911 "measure freq. too high"
	14	Bool	E1912 "."
	15	Bool	-
2223		Word	Warnings – unused (=0)
2425		Word	Profile version (z.B. 1.1 = 0110 hex)
2627		Word	Software version (z.B. 1.1 = 0110 hex)
2831		Unsigned 32	Operating time (of laser), in 0,1 hours
3235		Signed 32	Offset value (siehe auch output daten)
3639		Signed 32	Manufacture offset – unused (=0)
4043		Unsigned 32	Measuring units per revolution – unused (=0)
4447		Unsigned 32	Measuring range – unused (=0)

Octet	Bit	Туре	Output
4857		10 byte	Serial number
5859		Signed 16	Laser temperature in °C
60		Byte	Reserved – unused
61		Byte	Reserved – unused

8.14 Monitoring

Set to a trigger time of 500 ms, a watchdop internal to the PU monitors the functioning of the module. The following functions are monitored

- The main loop with Profibus requested processing
- The laser control
- The update function

In case of transient errors (ESD, program error, ...) the module can be started again after a watchdog reset. Each reset increments the watchdog counter by one.

Other reset causes are also counted:

- Spike detection reset
- SW reset
- Programming and debug reset
- Brownout reset (monitoring of the operating voltage)
- External reset
- Power-On reset

Page 80 ASTECH GmbH

LDM51 Lumos Manual Maintenance

9 Maintenance

9.1 Maintenance by the user

Please note:

- Dust on optical glass surfaces (transmitter and receiver optics) can be removed with a blower brush. Don't clean glass surfaces using cleaning agents containing organic solvents. In case of heavy pollution, please contact the manufacturer.
- Isopropyl alcohol is suitable for cleaning the device. Do not use any solvents.
- Do not open the device, otherwise the warranty obligations shall cease to apply.
- Do not loose any screws of the device.

9.2 Firmware update

Firmware updates of the sensor electronics of the LDM51 may only be done by the manufacturer.

9.3 Repair

In case of necessary repair, send the device to your dealer or to the manufacturer. Ensure the safe packaging and provide information about the conditions of use (application, installation, environment, etc.)

10 Error processing

Table 19: Error codes

Fehler	Meaning	Action	
e1001	Error operating system / Firmware		
e1002	Error operating system / Firmware	Restart system	
e1003	Error operating system / Firmware		
e1101	Error in communication with PC	Check connection to external system /	
e1102	Error in communication with PC	contact service for repair	
e1103	Laser module error		
e1104	Laser module error		
e1105	Laser module error		
e1106	Hardware error (internal data transfer)		
e1107	Hardware error (internal data transfer)		
e1108	Hardware error (controller)	Contact service / send LDM51 to supplier	
e1109	Hardware error (controller)		
e1110	Hardware error (SSI)		
e1111	Hardware error (SSI)		
e1112	Hardware error (Profibus)		
e1113	Hardware error (Profibus)		
e1201	Measurement impossible /no target	Adjust device / check target	

Page 82 ASTECH GmbH

Fehler	Meaning	Action
e1202	Error measuring module (calibration)	Contact service / send LDM51 to supplier
e1203	Target with unsuitable reflectivity	Check target and distance
e1204	Measurement interrupted (measuring module)	Restart system
e1205	Measurement still running (measuring module)	Restart system
e1206	Target too bright / too much back light	Check / limit ambient light
e1207	Target outside of the measurement window (MW)	No action or change MW setup
e1208	Incorrect measurement parameterization	Check setup
e1209	Hardware error (measuring module)	Contact service / send LDM51 to supplier

Table 20 : Warnings

Warnings	Meaning	Action
w1901	Restart being executed	No action
w1902	Input voltage outside of the specification (too low)	Check power supply:
w1903	Input voltage outside of the specification (too high)	1030 VDC
w1904	Temperature outside of the specification (too low)	
w1905	Heating active, min temperature not reached, no measurement possible	Check ambient temperature
w1906	Temperature outside of the specification (too high)	No action / wait until LDM51 is ready
W1907	Trigger input and trigger output active at the same time	Check ambient temperature

Warnings	Meaning	Action
w1910	Measurement not completed within predefined period of time	Activate TRI or TRO, not both for the same time
w1911	Measuring frequency too high	Use variable measuring time (MF0) / check target
W1912	Distance jump	Change MF

Page 84 ASTECH GmbH

11 Accessories (Options)

11.1 RS-232 cable for LDM51

For parameter setting an optional programming cable is available to link the LDM51 with a PC (COM port, RS-232). The use of the PC software LDMTool is recommended.

Table 21: Pin assignment of programming cable PC sided

Pin SUB-D 9 F	Color code	Meaning SUB-D 9 F (RS-232, PC COM)
Shield	-	Cable shield
3	brown	TxD
2	white	RxD
5	blue	GND

Table 22: Pin assignment of programming cable LDM51 sided

Pin LDM51	Color code	Meaning LDM51
Shield	-	Cable shield
3	white	TxD
10	violet	RxD
2	blue	GND
9	red	VCC (+10 V +30 V DC)
L	grey/pink	GND

Please use only high quality shielded cable.

RS-232 cable: TxD and RxD have to be crossed.

11.2 Connection box TCB30xA

A junction box with built-in terminal block and accessories is available optionally.

11.3 Adjustment bracket JW51x

The adjustment bracket enables the alignment of the device to the target. It allows a rotation of ±5° in two axes.

11.4 Software LDMTool from version 4.8

A demo version of the software LDMTool is included in the delivery. By purchasing a license number, the software becomes a full-version. Parameter setting and numerical display of measured vales are available also with the demo version (see Figure 17: Program LDMTool).

Page 86 ASTECH GmbH

12 Part numbers

Table 23: Part numbers

Part-No.	Name
10-2070-00	LDM51
10-2070-01	LDM51-h with heating
10-2071-00	LDM51S with SSI interface
10-2071-01	LDM51S-h with SSI interface and heating
10-2072-00	LDM51P with Profibus interface
10-2072-01	LDM51P-h with Profibus interface and heating
10-2073-00	LDM51SP with SSI and Profibus interface
10-2073-01	LDM51SP-h with SSI-, Profibus interface and heating
11-2000-00	Power supply 24V, 1A, Euro 1m
11-0001-00	USB-RS-232 Interface converter; 0,2m; max 460800 Baud
12-2000-01	Junction box LDM51
12-2018-00	Adjustment mounting bracket LDM51
15-2001-00	RS-232-cable D-SUB9F/Terminal, 2m
15-2003-00	Interface cable LDM51, 2 m
15-2003-01	Interface cable LDM51, 5 m
15-2006-02	Interface cable LDM51, 10 m
15-2006-03	Interface cable LDM51, 15 m
15-2006-04	Interface cable LDM51, 20 m
15-2006-05	Interface cable LDM51, 50 m
15-2006-06	Interface cable LDM51, 30 m
15-2006-08	Interface cable LDM51, 30 m, 90°
12-2010-00	Reflective foil matt white, A4
11-0006-00	ASTECH USB Stick (Documentation and Software)
17-2000-00	License number for PC Software LDMTool

Note: Several sensors are available as packages including sensor, cable, manual and CD (Set).

13 EG Declaration of conformity

We herewith declare, represendted by the signatories, that the following designated product

Laser distance sensor LDM51

agrees with the Directive of Electromagnetic Compatibility 2004/108/EG. The following harmonized standards were considered:

IEC 61326-1:2005	Electrical equipment for measurement, control and laboratory use, EMC requirements Part1: General requirement (IEC 61326-1:2005); German Version EN 61326-1:2006
IEC 60825-1:2007	Safety of Laser products - Part 1: Equipment classification and requirements (IEC 60825-1:2007); German Version EN 60825-1:2007; Laser Class 2
IEC 60068-2-1:2007 Ab	Environmental testing – Part 2: Tests – Testgroup Low Temperature Test Ab, test item passive, temperature -40°C (Storage)
IEC 60068-2-1:2007 Ad	Environmental testing – Part 2: Tests – Testgroup Low Temperature Test Ad, test item active, temperature -15°C (in function, without internal heating)
IEC 60068-21:2007 Ad	Environmental testing – Part 2: Tests – Testgroup Low Temperature Test Ad, test item active, temperature -40°C (in function, with internal heating)
IEC 60068-2-2:2007 Bb	Environmental testing – Part 2: Tests – Testgroup High Temperature Test Bb, test item passive, temperature +70°C (Storage)
IEC 60068-2-2:2007 Bd	Environmental testing – Part 2: Tests – Testgroup High Temperature Test Bd, test item active, temperature +60°C (in function)

Rostock, December 12, 2014

ASTECH Angewandte Sensortechnik GmbH

Jens Mirow Managing Director

Page 88 ASTECH GmbH

Page 90 ASTECH GmbH