**User Manual** 



Firmware Version from 1.1.12

## Version 1.2



CE

Dear User,

You are advised to carefully read this User Manual before turning on the LDM 301 Laser Distance Meter for the first time.

This is necessary to ensure that you will be able to use all the capabilities and features provided by your new purchase.

This product is subject to ongoing technological developments.

| Editorial deadline: | June 2008   |
|---------------------|-------------|
| Manual version:     | V 1.2       |
| Firmware version:   | from 1.1.12 |

Note:

Proper care has been used in compiling this document. No liability will be accepted in the event of damage resulting from the failure to comply with the information contained herein.

#### Contents

| 1 | General                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7                                                                    |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 2 | Safety Notes         2.1       Basic Information         2.2       Laser Classification         2.2.1       Safety Notes Regarding Laser Class 1         2.2.2       Safety Notes Regarding Laser Class 2         2.3       Electrical Power Supply         2.4       Important Operating Advice                                                                                                                                                              | 8<br>8<br>8<br>8<br>10<br>10                                         |
| 3 | Intended Purpose3.1General Product Description3.2Conforming Use3.3Non-Conforming Use/Error Sources                                                                                                                                                                                                                                                                                                                                                            | <b>11</b><br>11<br>11<br>12                                          |
| 4 | Technical Data                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13                                                                   |
| 5 | Product Description                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15                                                                   |
|   | <ul> <li>5.1 Configurations/Options</li> <li>5.2 Functional Elements</li> <li>5.3 Mechanical Integration Requirements</li> <li>5.4 Connector Pin Assignments</li> <li>5.4.1 Main Connector Port (M18)</li> <li>5.4.2 SSI-Port (M12)</li> <li>5.4.3 Profibus Port (M12)</li> <li>5.5 Status Display</li> <li>5.6 Pilot Laser</li> <li>5.7 Accessories</li> <li>5.7.1 Connection Case</li> <li>5.7.2 Protection Case</li> <li>5.7.3 Software LDMTool</li> </ul> | 15<br>15<br>17<br>18<br>19<br>20<br>21<br>22<br>22<br>22<br>22<br>22 |
| 6 | Interface Description                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23                                                                   |
|   | 6.1RS232 or RS422 Interface6.1.1Communication Protocol6.1.2Wiring6.1.3Q1 and Q2 Switching Outputs6.1.4Analog Output QA6.1.5Trigger Input                                                                                                                                                                                                                                                                                                                      | 23<br>23<br>26<br>26<br>27<br>28                                     |

|   | 6.2 SS                           | SI Interface                                                                   | 29             |
|---|----------------------------------|--------------------------------------------------------------------------------|----------------|
|   | 6.2.1                            | Specification                                                                  | 29             |
|   | 6.2.2                            | Electrical Connection                                                          | 30             |
|   | 6.3 Pr                           | ofibus Interface                                                               | 30             |
|   | 6.3.1                            | ID Number                                                                      | 30             |
|   | 6.3.2                            | Connection Requirements                                                        | 30             |
|   | 6.3.3                            | GSD File                                                                       | 30             |
|   | 6.3.4                            | Slave Address                                                                  | 30             |
|   | 6.3.5                            | Bus Termination                                                                | 31             |
|   | 6.3.6                            | Baud Rate                                                                      | 31             |
|   | 6.3.7                            | Segment Length                                                                 | 31             |
|   | 6.3.8                            | Electrical Connection                                                          | 32             |
|   | 6.3.9                            | Profibus-Parameter                                                             | 32             |
|   | 6.3.10                           | Diag Common                                                                    | 33             |
|   | 6.3.11                           | Diag Alarm                                                                     | 34             |
|   | 6.4 St                           | art Up                                                                         | 35             |
|   | 6.5 Pr                           | eparative Action before Installation                                           | 35             |
|   | 6.6 CI                           | necklist on Installation Work                                                  | 35             |
| 7 | Measure                          | ement                                                                          | 37             |
|   | 7.1 Id                           | entification                                                                   | 37             |
|   | 7.1.1                            | ID – Identification                                                            |                |
| 8 | ID2 – OI                         | nline Heln                                                                     | 37             |
| Č |                                  | a ration Mada                                                                  | 20             |
|   | 0.1 U                            | DM Single Distance Massurement                                                 | 38             |
|   | 0.1.1                            | DM – Single Distance Measurement                                               | 38             |
|   | 0.1.2                            | DT – Continuous Distance Measurement with External T                           |                |
|   | 0.1.3                            | 38                                                                             | nggei          |
|   | 8.1.4                            | VM – Single Speed Measurement                                                  |                |
|   | 8.1.5                            | VT – Continuous Speed Measurement                                              | 39             |
|   | 8.2 St                           | atus                                                                           |                |
|   | 8.2.1                            | TP – Internal LDM Temperature                                                  | 39             |
|   | 8.2.2                            | PA – All-Parameter Display                                                     | 39             |
|   | 8.2.3                            | HW – Hardware Diagnosis                                                        | 39             |
|   | 8.3 Se                           | etup Parameter                                                                 | 39             |
|   | 8.3.1                            | AS – Autostart Function                                                        | 40             |
|   | 0 0 0                            | PL – Pilot Laser                                                               | 10             |
|   | 8.3.Z                            |                                                                                |                |
|   | 8.3.2<br>8.3.3                   | PR – Reset to Factory Settings                                                 | 40             |
|   | 8.3.2<br>8.3.3<br>8.3.4          | PR – Reset to Factory Settings<br>DR – Trigger Cold Start                      | 40<br>41<br>41 |
|   | 8.3.2<br>8.3.3<br>8.3.4<br>8.3.5 | PR – Reset to Factory Settings<br>DR – Trigger Cold Start<br>SF – Scale Factor | 41<br>41<br>41 |

|    | 8.3.6    | OF – Offset                                     | 42 |
|----|----------|-------------------------------------------------|----|
|    | 8.3.7    | SO – Set Offset                                 | 42 |
|    | 8.3.8    | MW – Measuring Window                           | 42 |
|    | 8.3.9    | MF – Measurement Frequency [Hz]                 | 43 |
|    | 8.3.10   | SA – Average                                    | 43 |
|    | 8.3.11   | TD – External Trigger Delay [ms] & Level [Edge] | 44 |
|    | 8.3.12   | SE – Error Mode                                 | 44 |
|    | 8.3.13   | Q1/Q2 – Switching Output                        | 45 |
|    | 8.3.14   | QA – Analog output                              | 46 |
|    | 8.3.15   | BR – Baud Rate                                  | 46 |
|    | 8.3.16   | SD – Serial Interface Format                    | 47 |
|    | 8.3.17   | TE – Serial Interface Termination Character     | 47 |
|    | 8.3.18   | SC – Format SSI                                 | 48 |
|    | 8.3.19   | BB – Field Bus Baud Rate                        | 48 |
|    | 8.3.20   | AB – Bus Address                                | 48 |
| 9  | Prevent  | ive Maintenance & Care                          | 49 |
|    | 9.1 Us   | ser Maintenance Actions                         | 49 |
|    | 9.2 So   | oftware Update                                  | 49 |
|    | 9.3 Pr   | eventive Maintenance                            | 49 |
| 10 | Malfunc  | tion & Error Messages                           | 50 |
|    | 10.1 M   | alfunction                                      | 50 |
|    | 10.2 Er  | ror Codes                                       | 50 |
|    | 10.3 Er  | ror Messages                                    | 50 |
| 11 | PC-Inter | face Cable (Option)                             | 51 |
| 12 | EC Decl  | aration of Conformity                           | 52 |
|    |          |                                                 |    |

#### Figures

| Figure 1 Warning Hint Laser Class 2                                   | 9   |
|-----------------------------------------------------------------------|-----|
| Figure 2 Functional Elements                                          | 16  |
| Figure 3 Fitting dimensions LDM 301, zero-point (dimensions in mm).   | 17  |
| Figure 4 Terminal diagram of main connector port                      | 18  |
| Figure 5 Connection diagram SSI                                       | .19 |
| Figure 6 Profibus-IN connection diagram                               | 20  |
| Figure 7 Profibus-OUT connection diagram                              | 20  |
| Figure 8 Status display                                               | 20  |
| Figure 9 Pilot Laser position tolerance relative to measurement Laser | 22  |

| Figure 10 Wiring serial interface                    |    |
|------------------------------------------------------|----|
| Figure 11 Switching characteristics of LDM 301       | 26 |
| Figure 12 Example of LDM 301 switching output wiring | 27 |
| Figure 13 Signal diagram of LDM 301 analog output    | 27 |
| Figure 14 Example of LDM 301 analog output wiring    | 28 |
| Figure 15 Example of LDM 301 trigger input wiring    | 29 |
| Figure 16 Connection diagram M12 connector           |    |
| Figure 17 Connection diagram M12 connector           | 32 |
| Figure 18 Program LDMTool                            |    |
| Figure 19 Online help (command ID?)                  | 37 |
| Figure 20 Display parameter (command PA)             | 39 |
| Figure 21 Reset parameter (command PR)               | 41 |
| Figure 22 PC-Interface cable with power supply       | 51 |

#### Tables

| Table 1 Technical Data                                            | 14 |
|-------------------------------------------------------------------|----|
| Table 2 Device Configurations                                     | 15 |
| Table 3 Pin assignments of main connector port                    | 19 |
| Table 4 Status display – functions                                | 21 |
| Table 5 Command summary table                                     | 25 |
| Table 6 Pofibus baud rate versus segment length                   | 31 |
| Table 7 Pofibus cable features                                    | 32 |
| Table 8 Start up LDM 301                                          | 35 |
| Table 9 Pilot Laser PLx, values of parameter x                    | 40 |
| Table 10 Set Error Mode SEx, values for parameter x               | 45 |
| Table 11 Serial Interface Format SDy, values for parameter y      | 47 |
| Table 12 Serial Interface Term. Char. TEx, values for parameter x | 48 |
| Table 13 Malfunctions                                             | 50 |
| Table 14 Error codes                                              | 50 |
| Table 15 Error messages                                           | 50 |
| Table 16 Connection of programming cable PC sided                 | 51 |
| Table 17 Connection of programming cablLDM301 sided               | 51 |
|                                                                   |    |

#### 1 General

The LDM 301 Laser Distance Meter has been developed for use in industrial applications. Its purpose is to allow non-contact measurement of distance and speed within a big working range. Short measurement time and no reflector are required to locate any kind of diffusely reflecting target surface.

Available interfaces are RS232, RS422, SSI or Profibus, depending on the particularly requested model. The Laser Distance Meter is designed for easy installation and start. A LED display is located on the back panel to facilitate visual tracking of the current working status during normal operation.

Compact and robust design, easy mechanical attachment, low power consumption, selectable switching outputs and options for specific user settings are the distinguishing features of the LDM 301. Together they create a broad diversity of potential applications in industrial environments.

- Process monitoring in steel works and rolling mills
- Fill-level measurement
- Monitoring of moving objects
- Positioning of cranes and loading equipment
- Measurement of otherwise inaccessible target points, for example, inside of hollow bodies such as tubes or containers
- Position monitoring of road vehicles and ships

Standard LDM 301 delivery includes integral heating, status display and a telescopic sight. The red Laser point of the Pilot Laser is used to aim securely at the measuring point.

Of modular setup, the Distance Meter readily accepts accessories or custom-manufactured modules for specific applications.

The measure principle is based on runtime measurement. Thereby short Laser pulse signals are beamed. The device detects the signal that is reflected by the object and calculates the distance from time delay.

Measure range depends on reflectivity and surface of the target.

#### 2 Safety Notes

#### 2.1 Basic Information

Safety notes and operating advice must be read carefully and followed at any time during practical use of the LDM 301.



There is danger of Laser radiation or electric shock. For necessary repairs, the LDM 301 may not be opened by anyone other than manufacturer personnel, since dangerous high voltage and Laser radiation are generated in the inner parts of the device. Unauthorized intervention will void any claims for warranty.

Specified operating requirements (section 3 Intended Purpose) must be met.

Failure to comply with these safety notes or non-conforming product usage may cause physical injury to the user or damage to the LDM 301. Connectors must not be plugged or unplugged with the LDM 301 in powered state. Remember to turn power off before you begin any kind of work for establishing connections.

#### 2.2 Laser Classification

The LDM 301 is equipped with two Lasers:

| Laser for measurement | > | Laser Class 1 |
|-----------------------|---|---------------|
| Pilot Laser           | > | Laser Class 2 |

#### 2.2.1 Safety Notes Regarding Laser Class 1

The Laser for measurement qualifies as a Class 1 Laser device in accordance with standard EN 60825-1:2003-10. Laser radiation emitted by Class 1 Lasers is entirely harmless to the human eye so eye damage can be ruled out for this category.

#### 2.2.2 Safety Notes Regarding Laser Class 2

The Pilot Laser qualifies as a class 2 Laser device in accordance with standard IEC825-1/DIN EN 60825-1:2001-11 and as a class II device under FDA21 CFR.

In the event of accidental short-time exposure, the human eye is normally protected by its own lid-closing reflex and preventive reaction. The natural lid-closing reflex may however be impaired by the influence of medication, alcohol or drugs. Despite that, one should refrain from directly looking into the Laser beam. Do not point the Laser beam onto people.



#### Warning: Class 2 Laser Radiation - do not look into the beam!

Figure 1 Warning Hint Laser Class 2



The Pilot Laser can be switched off after device installation using the command PL0 (section 8.3.2 PL – Pilot Laser).

#### 2.3 Electrical Power Supply

For normal operation of the LDM 301, direct voltage supply of 10 V to 30 V is required. For operation with heating, direct voltage of 24 V should be available.

Observe specified limit values for input voltages. Outputs **must not** be used as inputs. All outputs are short-circuit proof. The LDM casing is electrically isolated from the sensor electronics. Immunity to electrostatic discharges (ESD) is 4 kV according to EN 61000-4-2.

#### 2.4 Important Operating Advice

To be able to exploit all capabilities and performance features and achieve a long service life of the system, you should follow all of the following rules:

- The LDM 301 must not be powered up if optical surfaces are found to be misted up or contaminated!
- Optical surfaces must not be contacted with bare hands!
- Use utmost caution when removing dust or dirt from an optical component!
- Prevent shock impacts during operation and transportation of the LDM 301!
- Protect the LDM 301 from overheating!
- Protect the LDM 301 from strong temperature variations.
- The LDM 301 provides splash-proofness and dust-proofness under IP67 internal protection level.



These safety and advisory notes must be read carefully and followed during practical use of the LDM 301.

#### 3 Intended Purpose

#### 3.1 General Product Description

The LDM 301 is a Laser Distance Meter for determining the distance to objects in motion or stationary with centimetre accuracy for:

- natural surfaces with 90% reflectivity in the range of 0.5 m to 300 m,
- reflector surfaces (e.g. Scotchlite 3000x) from 300 m to 3000 m and
- speed measurement in the range of 0 m/s to 100 m/s (at 0.5 m to 700 m distance).

With the help of a red Laser sighting point (Pilot Laser) a given target can be unequivocally identified. The actual range of measurement depends on the reflectivity and the surface quality of a target being measured. The LDM 301 relies on the time-of-flight-measurement principle for operation.

It is available with RS232 or RS422, depending on the Customer's request. Product manufacturing includes the installation of a requested configuration. Once installed, the interface cannot be replaced with another type.

The LDM 301 has two switching outputs and one external trigger input (all of them can be parameterized).

A distance measurement can be triggered:

- via RS232 interface or RS422 interface
- via Profibus DP-V0,
- by an external source (in external trigger mode),
- via SSI.

The LDM 301 is delivered in a stable cardboard box with adequate padding which can also be used for protected transportation of the Laser Distance Meter.

#### 3.2 Conforming Use

- Measurement of distance and speed and output of measured data via RS232 or RS422 interface or SSI or Profibus
- Special measuring functions

- Compliance with environmental requirements, operating temperature and storage temperature
- Operation in industrial environments that meet IP67 internal protection standard requirements (allowing for splashes of water and spray)
- Operation at correct voltage level
- Applying only specified signal levels to data lines.
- Measurement through an optically transparent medium such as glass, optical filters or Plexiglas should be performed with the measuring window function turned on.

#### 3.3 Non-Conforming Use/Error Sources

- Operate the LDM 301 only in accordance with its intended purpose and in a proper working condition.
- Safety devices must not be defeated.
- Information and warning signs must not be removed.
- Repair work on the LDM 301 must be performed by authorized personnel only.
- Do not operate the LDM 301 in an explosive environment.
- In order to obtain precise measurement results, make sure you follow these rules:
- Measurement against the sun or other strong sources of light may lead to faulty readings.
- Measurement of target surfaces with poor reflectance, but otherwise surrounded by a highly reflecting environment, may lead to faulty readings.
- Measurement of strongly reflecting surfaces may lead to faulty readings.
- Measurement through an optically transparent medium such as glass, optical filters, Plexiglass, etc. may lead to faulty readings.
- Do not use bad reflective materials (dark / black surfaces) as target under 10 m.
- Rapidly changing conditions of measurement (e.g. jumps in distance) may lead to faulty readings.

#### **Technical Data** 4

| Measuring features                    |                                                |
|---------------------------------------|------------------------------------------------|
| Measuring principle                   | Laser-pulse-time-of-flight measurement         |
| Measuring range <sup>1</sup>          | 0.5 m 300 m with natural surfaces <sup>2</sup> |
|                                       | 0.5 m 3000 m on target bound                   |
| Measuring accuracy                    | ± 20 mm (measured value output at 100 Hz)      |
| _                                     | ± 60 mm (measured value output at 2 kHz)       |
| Resolution                            | 1 mm                                           |
| Measuring time                        | Standard version: 0.5 ms                       |
|                                       | Special version: 0.1 ms                        |
| Measuring range velocity <sup>3</sup> | 0 ms <sup>-1</sup> 100 ms <sup>-1</sup>        |
| Measuring time velocity <sup>3</sup>  | 0.1 s 0.5 s                                    |
| 1                                     |                                                |

depending on target reflectivity, stray light influences and

atmospheric conditions
 <sup>2</sup> natural, diffusely reflecting surfaces, do not use bad reflective materials (dark / black surfaces) as target under 10 m

3 distance range to target: 0.5 m ... 700 m

| Laser                 |                                           |
|-----------------------|-------------------------------------------|
| Laser for measurement | Laser classification: Laser Class 1 under |
|                       | EN 60825-1:2003-10,                       |
|                       | Laser beam divergence                     |
|                       | Standard version: 1.7 mrad                |
|                       | Special version: 10 mrad,                 |
|                       | Wavelength 905 nm (infrared, invisible)   |
| Pilot Laser           | Laser classification: Laser Class 2 under |
|                       | IEC 825-1 / EN 60829,                     |
|                       | Wavelength 635 nm (rot)                   |

| Electric power requirements |                             |
|-----------------------------|-----------------------------|
| Supply voltage              | 10 V 30 V DC                |
| Power consumption           | < 5 W (without heating)     |
|                             | 11.5 W (with heating, 24 V) |

| Interfaces/terminals     |                                           |  |
|--------------------------|-------------------------------------------|--|
| Terminals                | 1x 12-pole (BINDER series 723) M18        |  |
|                          | 2x 5-pole (BINDER series 766) M12         |  |
|                          | B-encoded                                 |  |
| Serial interfaces        | RS232 or Option RS422, 9.6 460.8          |  |
|                          | kBaud, format: 8N1, ASCII                 |  |
| Profibus                 | DP-V0 slave   IEC 61158 / IEC 61784       |  |
| (LDM 301 P)              | 9.6 kBaud 12 MBaud, automatic             |  |
|                          | detection, external terminator,           |  |
|                          | slave address selectable via Profibus     |  |
| SSI                      | 50 kHz 1MHz, 25 µs pause                  |  |
| (LDM 301 S)              | 24bit, binary or gray-encoded, adjustable |  |
| Digital switching output | 2x "high-side-switch", max. load 0.22 A,  |  |
|                          | short-circuit-proof, adjustable windowing |  |
| Analog output            | 4 mA 20 mA current output                 |  |
| Trigger for              | 1 x trigger In/Out, edge and delay        |  |
| device synchronization   | selectable, trigger level 3 30 VDC,       |  |
| Operating modes          | Single measurement, continuous            |  |
|                          | measurement, mean value, external         |  |
|                          | triggering (selectable near-field         |  |
|                          | suppression and window functions)         |  |

| Environmental & operating requirements |                           |  |
|----------------------------------------|---------------------------|--|
| Operating temperature                  | - 40 °C to + 60 °C        |  |
| Storage temperature                    | - 40 °C to + 70 °C        |  |
| Rel. air humidity                      | 15 % to 90 %              |  |
| Phys. dimensions (LxWxH)               | 136 mm x 57 mm x 104 mm   |  |
| Weight                                 | About 800 g (depending on |  |
|                                        | configuration)            |  |
| Type of protection                     | IP67                      |  |
| EMC                                    | EN 61000-6-2, EN 55011    |  |

Table 1 Technical Data

#### 5 Product Description

#### 5.1 Configurations/Options

The LDM 301 is available in different configurations. They differ in their terminals and interfaces. The following devices are available:

| Name             | LDM 301A/RS232 | LDM 301A/RS422 | LDM 301 P | LDM 301 S |
|------------------|----------------|----------------|-----------|-----------|
| Serial interface | RS232          | RS422          | RS232     | RS232     |
| Analog output    | Yes            | Yes            | Yes       | Yes       |
| Profibus         | -              | -              | Yes       | -         |
| SSI              | -              | -              | -         | Yes       |

Table 2 Device Configurations

Depending on the measuring task the following options are additionally available:

- Increased maximum measuring frequency, 10 kHz instead standard 2 kHz
- Laser with increased divergence, 10 mrad instead standard 2 mrad

#### 5.2 Functional Elements

The casing consists of a robust, corrosion-resistant extrusion-molded aluminum structure with a front cover plate and a back cover plate equally corrosion-resistant. On each lateral side and on the underside of the LDM 301 casing there are three support pads with mounting holes (M4) for mechanical attachment of the LDM 301 (Figure 3).



- 1 Front tube
- 2 Transmitter optics
- 3 Receiver optics
- 4 Front cover plate
- 5 Casing
- 6 Back cover plate
- 7 Pilot Laser

Figure 2 Functional Elements

- 8 11 mm-rail
- 10 Status display
- 11 Main connector (M18)
- 12 Service screw
- 13 Support pads with M4 x 6
- 14 optional connectors Profibus or SSI

#### 5.3 Mechanical Integration Requirements

For integration of the LDM 301 Laser Distance Meter, three different versions of mechanical attachment are available.

- Attachment to a lateral surface: For attachment to a desired one of the two lateral surfaces, the LDM 301 provides three support pads (Figure 3) with mounting holes (M4 x 6).
- Attachment to casing bottom: Likewise, the LDM 301 provides three support pads (Figure 3) with mounting holes (M4 x 6) for attachment to the bottom face of its casing
- 3. Attachment via adapter plate (replacement of LDM300C): To replace an LDM300C with an LDM 301, an adapter plate is required. This plate must be screwed to the bottom side of the LDM 301. The adapter plate is specifically shaped and sized to allow the LDM 301 to be attached to the mechanical fixing points of an LDM300C.



Figure 3 Fitting dimensions LDM 301, zero-point (dimensions in mm)

Zero-point of the LDM 301 is identical with the outer surface plane of the front cover plate.

#### 5.4 Connector Pin Assignments

Depending on the implemented configuration version of the various LDM 301 models, different terminal facilities are available for connections. All models share the same type of main connector port.

#### 5.4.1 Main Connector Port (M18)

The main connector port (Figure 2, no. 11) includes the terminal points for voltage supply, for serial data communication (RS232 or RS422), for the two switching outputs (Q1 and Q2), one analog output (QA) and for one trigger input (TRIG). A shielded cable must be used for connection. This cable is included in delivery.



Figure 4 Terminal diagram of main connector port



Attention: Heed cable colours: **blue – VCC and gray/pink – GND**! Please use only high quality shielded cable.

| Pin | Colour code of cable | RS232 | RS422 | Description                               |
|-----|----------------------|-------|-------|-------------------------------------------|
| A   | White                | TxD   | RX+   | RS232 send data / RS422<br>receive data + |
| В   | Brown                | RxD   | RX-   | RS232 receive data / RS422 receive data - |
| С   | Green                | TRIG  | TRIG  | Trigger input                             |
| D   | Yellow               | QA    | QA    | Analog output (4 20 mA)                   |
| E   | Grey                 | n.c.  | TX-   | RS422 send data -                         |
| F   | Pink                 | n.c.  | TX+   | RS422 send data +                         |
| G   | Blue                 | VCC   | VCC   | Supply voltage                            |
| Н   | Red                  | n.c.  | n.c.  | not connected                             |
| J   | Black                | GND   | GND   | GND                                       |
| Κ   | Violet               | Q2    | Q2    | Switching output Q2                       |
| L   | Grey/pink            | GND   | GND   | GND                                       |
| М   | Red/blue             | Q1    | Q1    | Switching output Q1                       |

Table 3 Pin assignments of main connector port

#### 5.4.2 SSI-Port (M12)

Connection to the SSI interface is accomplished via a 5-pole, Bencoded M12 male connector. Shielded cables should be used for connection..





Figure 5 Connection diagram SSI

#### 5.4.3 Profibus Port (M12)

Profibus connection is via B-encoded 5-pole M12 connectors. Shielded cabling should be used.





Figure 6 Profibus-IN connection diagram





Figure 7 Profibus-OUT connection diagram

### 5.5 Status Display



Figure 8 Status display

| LED    | Function     | Display        | Status                      |
|--------|--------------|----------------|-----------------------------|
| Target | Reflectivity | Off            | No signal                   |
| _      | _            | Red blinking   | Very weak signal            |
|        |              | Red            | Weak signal                 |
|        |              | Yellow         | Signal available            |
|        |              | Green          | Good signal                 |
|        |              | Green blinking | Very good signal            |
| Status | Readiness    | Off            | No operating voltage        |
|        | for action   | Red            | Technical defect, operating |
|        |              | Green          | voltage supplied            |
|        |              |                | Ready for action            |
| Q1     | Switching    | Off            | Off                         |
|        | output 1     | Yellow         | Operating voltage supplied  |
| Q2     | Switching    | Off            | Off                         |
|        | output 2     | Yellow         | Operating voltage supplied  |
| Link   | Status       | Off            | No field bus                |
|        | interface    | Red            | Profibus error              |
|        |              | Yellow         | Operating voltage supplied, |
|        |              |                | Profibus inactive           |
|        |              | Green          | Operating voltage supplied, |
|        |              |                | Profibus working            |

Table 4 Status display – functions

#### 5.6 Pilot Laser

The Pilot Laser (Figure 3, no. 7) is intended to support alignment to a given target point during start-up action of the LDM 301. It qualifies as a Class 2 Laser device and operates at 635 nm (red) in the visible range. The Pilot Laser is not aligned to emit in a direction parallel with the measurement Laser. Instead, its beam intersects with that of the measurement Laser at a distance of 75 m.

Figure 9 shows the tolerance on Pilot Laser position in relation to the invisible measurement Laser as a function of the distance to an object being measured:



Figure 9 Pilot Laser position tolerance relative to measurement Laser

#### 5.7 Accessories

#### 5.7.1 Connection Case

A connection case with integrated terminal strip and accessories is optional available.

#### 5.7.2 Protection Case

A stainless steel protection case with integrated terminal strip and accessories is optional available.

#### 5.7.3 Software LDMTool

A software demo version of the LDMTool is in the scope of delivery. By purchasing a license number the full version can be activated. Parameterization and numerical measure value display via the integrated terminal are fully supported by the demo version.

#### 6 Interface Description

For interfacing, the LDM 301 provides different connectors depending on the specification (5.1 Configurations/Options). A main connector port (Figure 3, no. 11) with RS232 or RS422 interface and an additional SSI interface (Figure 4, no. 3) or a Profibus interface (Figure 4, no. 4, 5), depending on the customer's request.

#### 6.1 RS232 or RS422 Interface

#### 6.1.1 Communication Protocol

- Interface settings: asynchronous, 8 data bits, no parity, 1 stop bit
- Communication protocol format/syntax: 7-bit ASCII
- Proprietary communication protocol
- Commands are case-sensitive (no distinction between small lettering and capital lettering)
- Period "." (0x2E) serves as decimal separator for output of numbers
- Enter (0x0D) is used as command (send command) termination character
- With multi-value parameters, space (0x20) is used between each two values
- A parameterization command with new parameters triggers a response command with these parameters
- A parameterization command without new parameters triggers a response command with (most recent) parameters
- A parameterization command with parameters out of valid setting ranges triggers a response command with (most recent) parameters
- An unknown command and a faulty parameter format is quitted via "?" (0x3f)

#### 5BInterface Description

| Command<br>group   | Command | Description                                          | Standard(s)   | Range(s)                                                                                                                 |
|--------------------|---------|------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------|
| Operation<br>mode  | DM      | Single distance measurement                          | -             | -                                                                                                                        |
|                    | DT      | Continuous distance measurement                      | -             | -                                                                                                                        |
|                    | DF      | Single distance measurement with external triggering | -             | -                                                                                                                        |
|                    | VM      | Single speed measurement                             | -             | -                                                                                                                        |
|                    | VT      | Continuous speed measurement                         | -             | -                                                                                                                        |
| Status             | TP      | Internal device temperature in °C                    | -             | -                                                                                                                        |
|                    | PA      | All-parameter display                                | -             | -                                                                                                                        |
|                    | HW      | Hardware diagnosis                                   | -             | -                                                                                                                        |
| Setup<br>parameter | PR      | Reset to factory settings                            | -             | -                                                                                                                        |
|                    | DR      | Triggers a cold start                                | -             | -                                                                                                                        |
|                    | ASs     | Autostart function                                   | DT            | ID, ID?, DM, DT, DF, VM, VT,<br>TP, HW, PA, MF, TD, SA, SF,<br>MW, OF, SE, Q1, Q2, QA, BR,<br>SD, TE, BB, AB, SC, PL, AS |
|                    | MFx     | Measuring frequency [Hz]                             | 2000          | 1 2000                                                                                                                   |
|                    | TDx y   | External trigger delay [ms] and trigger level [edge] | 00.00<br>0    | 0 300.00<br>0 or 1                                                                                                       |
|                    | SAx     | Mean value                                           | 200           | 130000                                                                                                                   |
|                    | SFx     | Scale factor                                         | 1             | ± 0.001 10                                                                                                               |
|                    | MWx y   | Measuring window at beginning and end                | 0<br>5000.000 | ± float 32<br>± float 32                                                                                                 |
|                    | OFx     | Distance offset end                                  | 0.000         | ± float 32                                                                                                               |

#### Interface Description

| Command | Command    | Description                            | Standard(s) | Range(s)                   |
|---------|------------|----------------------------------------|-------------|----------------------------|
| group   | 00         |                                        |             |                            |
|         | SO         | Single distance measurement and        | -           | -                          |
|         |            | acceptance as distance offset          |             |                            |
|         | SEx        | Error mode for Q1, Q2 and QA           | 1           | 0 2                        |
|         | QAx y      | Analog output with lower and upper     | 0           | ± float 32                 |
|         |            | limit                                  | 50.000      | ± float 32                 |
|         | Q1w x y z  | Q1 switching output with trigger       | 2.000       | ± float 32                 |
|         |            | threshold, switching range, hysteresis | 5000        | ± float 32                 |
|         |            | and switching state                    | 0.100       | ± float 32                 |
|         |            | and officining state                   | 1           | 0 or 1                     |
|         | Q2 w x y z | Q2switching output with trigger        | 4.000       | ± float 32                 |
|         |            | threshold, switching range, hysteresis | 5000        | ± float 32                 |
|         |            | and switching state                    | 0.100       | ± float 32                 |
|         |            |                                        | 1           | 0 or 1                     |
|         | BRx        | Baud rate                              | 115200      | 9600, 19200, 38400, 57600, |
|         |            |                                        |             | 115200, 230400 or 460800   |
|         | SDx y      | Output format of serial interface      | 0           | 02                         |
|         |            |                                        | 0           | 03                         |
|         | TEx        | Terminating character for output via   | 0           | 0 9                        |
|         |            | serial interface                       |             |                            |
|         | SCx        | SSI format                             | 0           | 0 1                        |
|         | PLx        | Pilot Laser                            | 0           | 03                         |
|         | BBx        | Field bus baud rate                    | 0           | 0                          |
|         | AB         | Bus address                            | 0           | 0                          |

Table 5 Command summary table

#### 6.1.2 Wiring





Figure 10 Wiring serial interface

#### 6.1.3 Q1 and Q2 Switching Outputs

The purpose of Q1 and Q2 is to represent distance readings as logic operation data. They report events of positive or negative excession of a preset switching range with a certain amount of hysteresis.

Accordingly, they are perfectly suited for direct reprocessing of monitored quantities such as filling level or for detection of objects. Parameter settings are made via the serial interface. The command to achieve this is  $Q1w_x_y_z$  (where "\_" is equivalent to space (0x20)).

| Value | Description       | Specification | HIGH 01.02 |
|-------|-------------------|---------------|------------|
| w     | Trigger threshold |               | LOW Z      |
| x     | Switching range   | x ≥ 0; x ≥ y  | HIGH Z     |
| у     | Hysteresis        | y ≥ 0         | Q1, Q2     |
| z     | Switching state   | z = 0 or1     |            |

Figure 11 Switching characteristics of LDM 301

Wiring RS422 to RS422 unit



Figure 12 Example of LDM 301 switching output wiring

#### 6.1.4 Analog Output QA

The analog output allows standardized analog data transfers from or to a remote location over greater distances using a two-wire transmission line. The current which is injected into this line at levels from 4 mA to 20 mA is proportional to the measured distance within a selectable distance interval. Parameter settings can be made via the serial interface.

The command to achieve this is QAx\_y (where "\_" is equivalent to space (0x20)). Parameter settings for current output in the event of measurement failure can be made using the command SEx.



Figure 13 Signal diagram of LDM 301 analog output

The value of output current (in mA) is calculated as follows:





Figure 14 Example of LDM 301 analog output wiring

### 6.1.5 Trigger Input

The trigger input allows a single distance measurement to be triggered by an external signal that is applied as a voltage pulse. Selectable parameter settings are a value for delay in triggering (Trigger Delay) and the edge on which triggering is to occur (Trigger Level).

Parameter settings for trigger input can be made via the serial interface. The command to achieve this is  $TDx_y$  (where "\_" is equivalent to space (0x20)). The trigger function is enabled in DF measuring mode.



Figure 15 Example of LDM 301 trigger input wiring

#### 6.2 SSI Interface

#### 6.2.1 Specification

Optionally, the LDM 301 can be equipped with an SSI data interface (SSI=Synchronous Serial Interface). At the request of an SSI clock generator a distance measurement cycle will start, sending related data which are present at the shift register bit-by-bit to a controller. Depending on the length and quality of selected data lines, actual transfer rates may range from 50 kHz to 1 MHz with 25  $\mu$ s pause time between two bit sequences.

The data length is 24 bits plus one validity bit The format can be binary or gray-encoded. For parameter settings via the serial interface, the SCx command is available.

SCx x=0...binary, 25 bits (24 bits plus 1 validity bit)

x=1...gray, 25 bits (24 bits plus 1 validity bit)

Bit sequence:

| 24  | 23 |                                                       | 2 | 1   | 0  |
|-----|----|-------------------------------------------------------|---|-----|----|
| MSB |    | Bits 1 – 24 distance depending on preset scale factor |   | LSB | *) |

\*) Bit 0: Validity bit

#### 6.2.2 Electrical Connection



Figure 16 Connection diagram M12 connector

#### 6.3 Profibus Interface

#### 6.3.1 ID Number

The LDM 301 has the ID number 0AA2 (hex).

#### 6.3.2 Connection Requirements

The LDM 301 may be connected to any kind of Profibus DP structure, the requirement being that the selected Profibus DP master is capable of sending a parameterization telegram, and the master's pertaining editing tool (typically, editing software) will support the representation of parameters that are contained in the respective device master file (GSD file.

#### 6.3.3 GSD File

The GSD file is named LDM30AA2.GSD. A GSD file includes the two files LDM301.dib and LDM301.bmp. These are intended for representation of the LDM 301 in the editing tool. For integration of these files, please consult the special editing tool.

#### 6.3.4 Slave Address

To facilitate multiple-participant bus communication, the Profibus slave address can be set in a range of 0 to 125. A desired address can be set via the Profibus, using the SSA command. For information on how to

change the slave address via the editing tool, you should consult the special editing tool documentation. Address 4 is set in as-shipped state of the LDM 301.

The slave address is permanently maintained in the EEPROM. It will also be preserved in the event of a voltage failure. Where more than one slave (LDM 301) are to share a common Profibus, the various slaves must be connected one after the other and be assigned different addresses.

#### 6.3.5 Bus Termination

For LDM 301 operation, an external bus terminator must be installed. Voltage supply of 5 V required for the terminator is available at Profibus-OUT. This 5 V supply is electrically isolated from general voltage supply (VCC) and rated for a current load up to 100 mA.

The terminating resistor is available as an accessory item.

#### 6.3.6 Baud Rate

The LDM 301 has its own device for automatic detection of the following baud rates: 9.6 / 19.2 / 93.75 / 187.5 / 500 k baud and 1.5 / 3 / 6 / 12 MBaud.

#### 6.3.7 Segment Length

The maximum allowed segment length between to Profibus participants depends on the selected baud rate. The following rules on segment lengths must be fulfilled:

| Baud rate [baud] | Segment length [m] |
|------------------|--------------------|
| 9.6 k – 93.75 k  | 1200               |
| 187.5 k          | 1000               |
| 500 k            | 400                |
| 1.5 M            | 200                |
| 3 M – 12 M       | 100                |

Table 6 Pofibus baud rate versus segment length

To comply with these segment rules, use of cable type A is strongly recommended. Distinguishing features of cable type A are:

| Parameter                   | Wert         |
|-----------------------------|--------------|
| Wave resistance             | 135 165 Ohm  |
| Capacitance per unit length | < 30 pf/m    |
| Loop resistance             | < 110 Ohm/km |
| Cable wire diameter         | > 0.64 mm    |
| Cable wire cross-section    | > 0.34 mm²   |

Table 7 Pofibus cable features

#### 6.3.8 Electrical Connection



Figure 17 Connection diagram M12 connector

#### 6.3.9 Profibus-Parameter

A PB master uses the GSD file to edit parameters for the slave. It must send these at least once to the slave in order to enable the slave to operate in cyclic data exchange mode. Because the slave has been programmed with adequate tolerance, it can be operated with only 7byte standard PB parameters (i.e. involving no specific user profile parameters).

| Class 2 function:                | Selects slave type according to encoder profile                                                                                                                                         |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Commissioning                    | Sends more than six standard diagnose bytes                                                                                                                                             |
| Diagnostics:                     | (16 bytes for class 1 slave, 77 bytes for class 2 slave)                                                                                                                                |
| Measure Mode:                    | Operating (trigger) mode of Laser (DF, DT)                                                                                                                                              |
| Trigger Delay and<br>Level:      | Transfers values directly to command TDx (only for DF external)                                                                                                                         |
| Averaging:                       | Transfers value to command SAn (number of values for averaging)                                                                                                                         |
| Measuring<br>Frequency:          | Number of measurement cycles per second (1 to 2000 or to 1000, respectively). Is transferred to command MFnn.                                                                           |
| Offset:                          | A measured value can be assigned a certain offset (corrective value). This value will not be transmitted to the Laser Distance Meter. Instead, it is processed in the very PB assembly. |
| Scale Factor:                    | Available scaling factors from -10.0 to +10.0<br>Up to five post-comma digits can be processed                                                                                          |
| Error Mode:                      | Selects distance value in the event of an error.                                                                                                                                        |
| Pilot Laser:                     | Turns Pilot Laser on, off or into blinking mode.                                                                                                                                        |
| Measuring Window:                | Defines starting point and end point of measuring window.                                                                                                                               |
| Diagnostic Interval:             | 0: sets output of diagnostic data in the case of alarms only 1 to 10000: sets output of diagnostic data at intervals of $n \times 100ms$ .                                              |
| Alarm 1/2:                       | Sets switching threshold for output n in distance units.<br>Is transferred to command Qn.                                                                                               |
| Active Range<br>Alarm 1/2:       | +/- range for switching outputs in distance units.<br>Is transferred to command Qn.                                                                                                     |
| Hysteresis<br>Alarm 1/2:         | +/- hysteresis for switching outputs in distance units.<br>Is transferred to command Qn.                                                                                                |
| Active Range Level<br>Alarm 1/2: | 0 or 1 for switching outputs in active range.<br>Is transferred to command Qn.                                                                                                          |

#### 6.3.10 Diag Common

General diagnostic data fully comply with the standard profile. They are updated with each Profibus diagnosing request. The use of "Diag Common" data presumes availability of class 2 functionality and a commissioning diagnostic function. In the case of errors (Enn), an alarm message will be transmitted as Extended Diagnosis containing the full set of diagnostic data.

In order to have the current temperature and operating time values displayed, Diagnostic Interval must be set to a value unequal "0". A

Diagnostic Interval setting of 100 will cause a 10 sec updating of data. Please note that the Laser Distance Meter must register and transfer a temperature value in DF modes as a precondition for temperature output. This means that temperatures will not be transmitted unless values were recorded.

#### 6.3.11 Diag Alarm

Alarm messages by the Laser Distance Meter are output once in the form of EXT.DIAG. Active alarms are marked by X instead of - Alarms are counted, but never saved.

E98 shows problems in communication with the Laser Distance Meter. Errors are reported as Ext.Diag on occurrence. This is followed by an attempt to re-trigger the Laser. As a result, permanently repeating errors will positively increment the content of the related error counter.

#### 6.4 Start Up

#### 6.5 **Preparative Action before Installation**

- Remove LDM 301 packing with utmost caution
- Check for completeness of scope of delivery
- Inspect Laser Distance Meter and accessory items for visible damage
- Inspect connector terminals and cabling for visible damage

#### 6.6 Checklist on Installation Work

The table below contains a proposal for LDM 301 start-up work. It does not claim to be complete. To provide specific user cabling is the responsibility of the user and assumed to be available. It is also the user's responsibility to make application-adapted parameter settings of the Profibus (optional), notably, of the slave address.

| No. | Working step                                                      |
|-----|-------------------------------------------------------------------|
| 1   | Unpack LDM 301, inspect for visible damage                        |
| 2   | Mechanically fix LDM 301 in working position, use three M4        |
|     | threaded holes of one of three available mounting pads of the     |
|     | LDM 301 (5.3 Mechanical Integration Requirements)                 |
| 3   | Insert connector in main connection port and screw connector      |
|     | firmly on. Make sure you do this in power-off state!              |
| 4   | Install and firmly screw Profibus and SSI connectors (optional)   |
| 5   | Turn on voltage supply. Status LED must light green               |
| 6   | Make LDM 301 parameter settings via RS232/RS422                   |
| 7   | Direct LDM 301 onto target, using the sight pointer or additional |
|     | sighting device on 11mm-rail                                      |
| 8   | Select distance measurement mode                                  |
| 9   | Trigger distance measurement (Laser turns on, measurement         |
|     | cycle is launched via Profibus or SSI)                            |
| 10  | Use visible Laser (Pilot Laser) to sight a given target           |
| 11  | Lock the LDM 301                                                  |
| 12  | Final visual inspection                                           |

Table 8 Start up LDM 301

Before switching on the power supply on make sure that all cable ends are protected against short circuit effects!

Connect cable terminals as required for the particular operating mode. To prevent short circuits, you should seal unused cable ends!

For starting up, a PC with RS232 or RS422 data interface and a terminal program are required. We recommend the Windows program LDMTOOL Version 3.1 or higher (Figure 18).

| LDMTool (LDM301)                 |                          |
|----------------------------------|--------------------------|
| Elle Parameter Commands Option   | ons <u>H</u> elp         |
| 🖻 🖬 🌐 👎 👎 🗛 🔺 F                  | ? ?                      |
| Parameter                        | Terminal Graphic Log     |
| Timing                           | b 0005 709               |
| SA 10                            | D 0006.709               |
| ME 50                            | 0 0006.690               |
|                                  | b 0006.707               |
| TD 1000.00 10 🗨                  | 0 0006.695               |
| General                          | D 0006.708               |
| SE 1.000000                      | 0 0006.702               |
| 0.000                            | 0006.685                 |
|                                  | 0 0006.694               |
| AS dt                            | D 0006.696               |
| SE 0 🜩                           | D 0006.691               |
| MW 0.000 30.000                  | D 0006.704               |
|                                  | p 0006.711               |
|                                  | 0 0006.699               |
| String Output Format             | D 0006.705               |
| SD 0 🜩 0 🜩                       | D 0006.700               |
| TE D                             | D 0006.702               |
| - Analag Output 4, 20 mà         | D 0006.701<br>D 0006.701 |
| Analog Output 420 mA             | D 0006.688               |
| QA JUUUU JUUUU                   | D 0006.688               |
| Digital Output                   | 0 0006.691               |
| 01 2000 5000 0 100 1             | 0006.705                 |
| 02 4000 5000 0 100 1             | p 0006.707               |
|                                  | D 0006.692               |
| Option Profibus/SSI              |                          |
| BB 0                             |                          |
| AB 0                             |                          |
| SC 0                             |                          |
|                                  |                          |
| 🚏 Get 🛛 👎 Set                    | STOP DT DF TP ID         |
| COM1:115200,8,None,1,None Get Pa | arameter ok ///          |

Figure 18 Program LDMTool

#### 7 Measurement

#### 7.1 Identification

#### 7.1.1 ID – Identification

In response to an ID command, the LDM 301 outputs its manufacturing data in this order: product type, firmware version, firmware data, firmware time, fabrication number, date of manufacture and time of manufacture.

Example:

LDM 301 1.2.2(R) 03.07.2007 11:31 060001 11.04.2007 08:56

#### 8 ID? – Online Help

On triggering an ID? command, the user will be displayed an overview of all available operations and parameters. These are explained in the following sections.

| Operation Mode                                          |
|---------------------------------------------------------|
| DM[Enter]single distance                                |
| DT[Enter]trigger                                        |
| DF[Enter]trigger                                        |
| VM[Enter]single velocity                                |
| VT[Enter] continuous velocity internal trigger          |
| Status                                                  |
| TP[Enter][°C]                                           |
| HW[Enter]hardware status                                |
| PA[Enter]display parameter                              |
| Setup Parameter                                         |
| AS[Enter]/ASxyz[Enter]display/set autostart command     |
| PL[Enter]/PLx[Enter]display/set pilot laser             |
| PR[Enter]reset parameter                                |
| DR[Enter]reset device                                   |
| SF[Enter]/SFx[Enter]display/set scale factor            |
| OF[Enter]/OFx[Enter]display/set user offset             |
| SO[Enter]set user offset from distance                  |
| MW[Enter]/MWx y[Enter]display/set measure window        |
| MF[Enter]/MFx[Enter]display/set measure frequency       |
| SA[Enter]/SAx[Enter]display/set average value           |
| TD[Enter]/TDx y[Enter]display/set trigger delay level   |
| SE[Enter]/SEx[Enter]display/set error mode              |
| Q1[Enter]/Q1w x y z[Enter]display/set digital output Q1 |
| Q2[Enter]/Q2w x y z[Enter]display/set digital output Q2 |
| QA[Enter]/QAx y[Enter]display/set analog output QA      |
| BR[Enter]/BRx[Enter]display/set baud rate RS232/422     |
| SD[Enter]/SDx y[Enter]display/set data format RS232/422 |
| TE[Enter]/TEx[Enter]display/set terminator RS232/422    |
| BB[Enter]/BBx[Enter]display/set baud rate bus           |
| AB[Enter]/ABx[Enter]display/set address bus             |
| SC[Enter]/SCx[Enter]display/set SSI format              |
|                                                         |

Figure 19 Online help (command ID?)

#### 8.1 Operation Mode

#### 8.1.1 DM – Single Distance Measurement

The LDM 301 performs exactly one measurement, on completion of which it will wait for next instructions.

The time a measurement cycle requires depends on the number of SA measurement value settings and the preset measuring frequency (MF).

#### 8.1.2 DT – Continuous Distance Measurement

The LDM 301 performs continuous distance measurement until halted by a special command (RS232/RS422: Escape = 0x1B).

The output rate of measured values depends on the number of SA measuring value settings and the preset measuring frequency (MF).

#### 8.1.3 DF – Single Distance Measurement with External Trigger

The LDM 301 must be transferred to DF operating mode. It will then perform exactly one measurement cycle on receipt of an external trigger signal and wait in DF mode for the next trigger event to arrive.

This operating mode must be terminated with the help of a special command (RS232/RS422: Escape = 0x1B).

Trigger events must be applied to the external trigger input (6.1.5 Trigger Input).

The interval between two single measurements depends on the number of preset SA measurement values, the setting for measurement frequency (MF) and the setting for trigger delay (TD).

#### 8.1.4 VM – Single Speed Measurement

The LDM 301 performs 25 single measurement cycles, on completion of which it will use the 25 single readings to calculate a resulting speed.

The length of time, which measurement requires, depends on the number of preset SA measurement values and the setting for measurement frequency (MF).

#### 8.1.5 VT – Continuous Speed Measurement

The LDM 301 performs continuous measurement in packages of 25 single measurement cycles. This measuring mode must be halted with a special command (RS232/RS422: Escape = 0x1B).

The time interval between single measurements depends on the preset number of SA measurement value and the setting for measurement frequency (MF).

#### 8.2 Status

#### 8.2.1 TP – Internal LDM Temperature

The LDM 301 outputs its internal temperature via the serial interface and the Profi-bus. Temperature values are output in degrees Celsius (°C).

#### 8.2.2 PA – All-Parameter Display

A complete list of parameters is output via the serial interface.

Example:

```
measure frequency[MF]
                                   2000hz
trigger delay/level[TD]
                                  0.00msec 0
average value[SA]
                                  20
                                  1.000000
scale factor[SF]
                                   -5000.000 5000.000
measure window[MW]
distance offset[OF]
                                   1.000
error mode[SE]
                                   20.000 10.000 1.000 1
digital out[Q1]
digital out[Q2]
                                  1.000 30.000 0.500 1
analog out[QA]
                                  1.000 300.000
RS232/422 baud rate[BR]
                                  115200
RS232/422 baud rate[BR] 115200
RS232/422 output format[SD] dec (0), value (0)
RS232/422 output terminator[TE] ODh OAh (0)
                                  bin (0)
SSI output format[SC]
visier pointer[PL]
                                   2
autostart command[AS]
                                   ID
```

Figure 20 Display parameter (command PA)

#### 8.2.3 HW – Hardware Diagnosis

Outputs a specific LDM list of characteristics and measured quantities.

#### 8.3 Setup Parameter

Parameter settings can be made via this serial interface.

0x0D as termination character will cause the command to be transmitted to the LDM 301.

For commands with one parameter, the parameter can be defined either directly or separated by space (0x20). For commands including several parameters, each two parameters must be separated by space (0x20).

#### 8.3.1 AS – Autostart Function

This function defines how the LDM 301 will behave after a cold start. Once a cold start was triggered, the LDM will automatically perform this command and transmit related data via the serial interface.

| Query:                   | AS                                                                                                                    |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Set:                     | ASs                                                                                                                   |
| Parameter value range s: | ID, ID?, DM, DT, DF, VM, VT, TP, HW, PA, MF,<br>TD, SA, SF, MW, OF, SE, Q1, Q2, QA, BR, SD,<br>TE, BB, AB, SC, PL, AS |
| Standard:                | DT                                                                                                                    |

#### 8.3.2 PL – Pilot Laser

PLx defines parameter settings for Pilot Laser behaviour.

| Query:                   | PL                                                          |
|--------------------------|-------------------------------------------------------------|
| Set:                     | PLx                                                         |
| Parameter value range x: | 0, 1, 2, 3 (Table 9 Pilot Laser PLx, values of parameter x) |
| Standard:                | 0                                                           |

| х | Pilot Laser behaviour |
|---|-----------------------|
| 0 | Off                   |
| 1 | On                    |
| 2 | Blinking (2 Hz)       |
| 3 | Blinking (5 Hz)       |

Table 9 Pilot Laser PLx, values of parameter x

#### 8.3.3 PR – Reset to Factory Settings

Resets all parameters to their factory settings except for the baud rate. We recommend <u>not using</u> this command. The device has to be reprogrammed afterwards (auto start, scaling of analog output etc.).

Parameter for firmware version 1.1.16:

| measure frequency[MF]<br>trigger delay/level[TD]<br>average value[SA]<br>scale factor[SF]<br>measure window[MW] | 2000(max2000)hz<br>0.00msec 0<br>20<br>1.000000<br>-5000.000.5000.000 |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| distance offset[OF]                                                                                             | 0.000                                                                 |
| error mode[SE]                                                                                                  | 1                                                                     |
| digital out[Q1]                                                                                                 | 0.000 0.000 0.000 1                                                   |
| digital out[Q2]                                                                                                 | 0.000 0.000 0.000 1                                                   |
| analog out[QA]                                                                                                  | 1.000 300.000                                                         |
| RS232/422 baud rate[BR]                                                                                         | 115200                                                                |
| RS232/422 output format[SD]                                                                                     | dec (0), value (0)                                                    |
| RS232/422 output terminator[TE]                                                                                 | 0Dh 0Ah (0)                                                           |
| SSI output format[SC]                                                                                           | bin (0)                                                               |
| visier pointer[PL]                                                                                              | 2                                                                     |
| autostart command[AS]                                                                                           | ID                                                                    |

Figure 21 Reset parameter (command PR)

#### 8.3.4 DR – Trigger Cold Start

DR performs a cold start of the LDM 301, simulating an actual voltage break situation. This command may prove useful after changes in the auto start command.

#### 8.3.5 SF – Scale Factor

SFx allows a measured output value to be scaled via parameter settings for a scale.

| Query:                   | SF                                          |
|--------------------------|---------------------------------------------|
| Set:                     | SFx                                         |
| Parameter value range x: | -100.001 and 0.001 10; resolution: 0.000001 |
| Standard:                | 1.000000                                    |

#### 8.3.6 OF – Offset

OF parameterizes a user-adapted offset x which is added to the measured value.

| Query:                   | OF                         |
|--------------------------|----------------------------|
| Set:                     | OFx                        |
| Parameter value range x: | float32; resolution: 0.001 |
| Standard:                | 0.000                      |

The LDM 301 performs <u>no</u> plausibility check on a preset offset value. Accordingly, correct parameterization is the user's responsibility!

#### 8.3.7 SO – Set Offset

SO performs one single distance measurement, then sets it as –OF (offset). Function SO can only be carried out. It does not represent a parameter in the actual sense of the word.

SO can be used for zeroing of applications, systems, processes, etc..

#### 8.3.8 MW – Measuring Window

Parameterizes a metrological range by definition of a starting point x and an end point y as limits for output of measured values.

Examples of measurement window application:

- Masking out sources of interference before or behind a selected range for measurement
- Definition of a desired range for measurement

A target which is detected before or behind a preset measurement window will create an invalid measured value output.

| Query:                      | MW                         |
|-----------------------------|----------------------------|
| Set:                        | MWx y                      |
| Parameter<br>value range x: | float32; resolution: 0.001 |
| Parameter<br>value range y: | float32; resolution: 0.001 |

Standard: 0.000 ... 5000.000

The LDM 301 performs no check for plausibility of a preset measurement window. For this reason, it is the user's responsibility to ensure correct parameterization!

#### 8.3.9 MF – Measurement Frequency [Hz]

MF parameterizes the number x of individual pulses to be emitted per second.

| Query:                      | MF                     |
|-----------------------------|------------------------|
| Set:                        | MFx                    |
| Parameter<br>value range x: | -1 2000; resolution: 1 |
| Standard:                   | 2000                   |

For example, MF1000 means that 1000 individual pulses will be emitted each second. The time to measure and, hence, the transmission of a measured result via the serial interface additionally depend on the setting for parameter SA.

Examples:

MF1000, SA1000: measuring time = 1 s (1 measured value per second at serial interface)

MF2000, SA1000:

measuring time = 0.5 s (2 measured values per second at serial interface)

MF2000, SA20000:

measuring time = 10 s (1 measured value at serial interface every 10 s)

#### 8.3.10 SA – Average

SA parameterizes the number of single measured values to be averaged for a result. SA is directly dependent on MF. (8.3.9 MF - Measurement Frequency [Hz]

| Query:    | SA                     |
|-----------|------------------------|
| Set:      | SAx                    |
| Parameter | 1 30000; resolution: 1 |
| Standard: | 200                    |

#### 8.3.11 TD – External Trigger Delay [ms] & Level [Edge]

TD parameterizes LDM behaviour in external trigger mode (DF).

- x designates the delay in triggering a single measurement, in units of a millisecond.
- y designates the edge on arrival of which measurement will be triggered.
- 0 means that measurement is triggered on a falling edge (high-tolow transition).
- 1 means that measurement is triggered on a rising edge (low-tohigh transition).

| Query:                      | TD                                   |
|-----------------------------|--------------------------------------|
| Set:                        | TDx y                                |
| Parameter<br>value range x: | 0 300.00 msec; resolution: 0.01 msec |
| Parameter<br>value range y: | 0 or 1                               |
| Standard:                   | 0.00 msec 0                          |

If TD x trigger events must have been received before a measurement is output.

#### 8.3.12 SE – Error Mode

Parameterizes the behaviour of the two switching outputs Q1 and Q2 and that of the analog output QA in the event of failure to measure plus the state on completion of a single distance measurement.

| Query:                      | SE                                                               |
|-----------------------------|------------------------------------------------------------------|
| Set:                        | SEx                                                              |
| Parameter<br>value range x: | 0, 1, 2 (Table 10 Set Error Mode SEx, values for parameter $x$ ) |
| Standard:                   | 1                                                                |

| х | Q1, Q2 (z=0) | Q1, Q2 (z=1) | QA           |
|---|--------------|--------------|--------------|
| 0 | Latest value | Latest value | Latest value |
| 1 | High         | Low          | 3 mA         |
| 2 | Low          | High         | 21 mA        |

Table 10 Set Error Mode SEx, values for parameter x

The LDM 301 performs no plausibility check of a selected error mode. For this reason, correct parameterization is the user's own responsibility!

#### 8.3.13 Q1/Q2 – Switching Output

Q1/Q2 parameterizes the behaviour of switching output Q1 or Q2. (6.1.3 Q1 and Q2 Switching Outputs). Parameterizes a measurement range's starting point w, on reaching of which the output will be triggered, the length x of the measurement range, the hysteresis y and logic behaviour z.

| Query:                      | Q1/Q2                                |
|-----------------------------|--------------------------------------|
| Set:                        | Q1w x y z/Q2w x y z                  |
| Parameter value range w:    | float32; resolution: 0.001           |
| Parameter<br>value range x: | float32; resolution: 0.001           |
| Parameter<br>value range v  | float32; resolution: 0.001           |
| Parameter<br>value range z: | 0 or 1                               |
| Standard:                   | Q1: 2 5000 0.1 1<br>Q2: 4 5000 0.1 1 |

The LDM 301 performs no check for plausibility of QA settings. Accordingly, it's the user's responsibility to ensure correct parameterisation!

#### 8.3.14 QA – Analog output

QA parameterizes the behaviour of the QA analog output (6.1.4 Analog Output QA).

Available for setting are the lower limit x and the upper limit y of a current range from 4 to 20 mA. The lower limit may both be smaller and greater than the upper limit. Accordingly, the current range will reverse.

Inputs of identical limits will be ignored and not accepted.

| Query:                   | QA                         |
|--------------------------|----------------------------|
| Set:                     | QAx y                      |
| Parameter value range x: | float32; resolution: 0.001 |
| Parameter value range y: | float32; resolution: 0.001 |
| Standard:                | 0 50.000                   |

The LDM 301 performs no check for plausibility of QA settings. For this reason, correct parameter settings are the user's own responsibility!

#### 8.3.15 BR – Baud Rate

BR facilitates conversion to other serial baud rate x. Following a change in the baud rate, a cold start is not necessarily required.

| Query:                      | BR                                                  |
|-----------------------------|-----------------------------------------------------|
| Set:                        | BRx                                                 |
| Parameter<br>value range x: | 9600, 19200, 38400, 57600, 115200, 230400 or 460800 |
| Standard:                   | 115200                                              |

#### 8.3.16 SD – Serial Interface Format

SD parameterizes the format x and content y of serial interface outputs for distance and speed measurement. Available settings for format are decimal (ASCII), hexadecimal (ASCII) and binary.

| Query:                   | SD                                                                        |
|--------------------------|---------------------------------------------------------------------------|
| Set:                     | SDx y                                                                     |
| Parameter value range x: | 0, 1, 2                                                                   |
| Parameter value range y: | 0, 1, 2, 3 (Table 11 Serial Interface Format SDy, values for parameter y) |
| Standard:                | 0 0                                                                       |

Content means that signal strength and/or temperature are available items for output in additional to actual measured value output.

|   | SD0 y                                              | SD1 y                                              | SD2 y                                              |
|---|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| у | Decimal                                            | Hexadecimal                                        | Binary                                             |
| 0 | Measured value                                     | Measured value                                     | Measured value                                     |
| 1 | Measured value, signal strength                    | Measured value, signal strength                    | Measured value, signal strength                    |
| 2 | Measured value,<br>signal strength,<br>temperature | Measured value,<br>signal strength,<br>temperature | Measured value,<br>signal strength,<br>temperature |

Table 11 Serial Interface Format SDy, values for parameter y

#### 8.3.17 TE – Serial Interface Termination Character

TE parameterizes the serial interface termination character for distance and speed measurement.

As a necessary requirement, output format SD0 y must be set.

| Query:          | TE                                           |
|-----------------|----------------------------------------------|
| Set:            | TEx                                          |
| Parameter value | 0 9; resolution 1 (Table 12 Serial Interface |
| range x:        | Term. Char. TEx, values for parameter x)     |
| Standard:       | 115200                                       |

| x           | 0      | 1    | 2    | 3    | 4    | 5    | 6     | 7     | 8     | 9              |
|-------------|--------|------|------|------|------|------|-------|-------|-------|----------------|
| Hex code    | 0x0D0A | 0x0D | 0x0A | 0x02 | 0x03 | 0x09 | 0x20  | 0x2C  | 0x3A  | 0x3B           |
| Description | CR LF  | CR   | LF   | STX  | ETX  | Tab  | Space | Comma | Colon | Semi-<br>colon |

Table 12 Serial Interface Term. Char. TEx, values for parameter x

#### 8.3.18 SC – Format SSI

SC parameterizes format x of SSI code (6.2 SSI Interface).

| Query:                   | SC     |
|--------------------------|--------|
| Set:                     | SCx    |
| Parameter value range x: | 0 or 1 |
| Standard:                | 0      |

#### 8.3.19 BB – Field Bus Baud Rate

Parameterizes the baud rate for field bus operation. (currently unsupported)

| Query:                   | BB  |
|--------------------------|-----|
| Set:                     | BBx |
| Parameter value range x: | 0   |
| Standard:                | 0   |

#### 8.3.20 AB – Bus Address

Parameterizes bus address x of the field bus. (currently unsupported)

| Query:                   | AB  |
|--------------------------|-----|
| Set:                     | ABx |
| Parameter value range x: | 255 |
| Standard:                | 0   |

#### 9 Preventive Maintenance & Care

#### 9.1 User Maintenance Actions

Please note:

- Dust on optical glass surfaces (transmitter optics, receiver optics) may be removed using a pneumatic brush. However, do not use cleaners containing organic solvents to wipe surfaces of this kind clean. You are advised to contact the manufacturer in the event of stubborn contamination or soiling.
- Isopropanol is suitable for LDM 301 cleaning. Remember not to use solvents for cleaning.
- You are prohibited from opening the LDM 301. Failure to comply will void any claims for warranty.
- Do not loosen or remove any screw on the LDM 301.

#### 9.2 Software Update

Firmware updates may not be performed by anyone other than manufacturer personnel.

#### 9.3 Preventive Maintenance

In the event of necessary repair work, you should carefully pack, enclose a note stating actual operating conditions (application, connection and environment) and ship the LDM 301 to your competent dealer.

#### 10 Malfunction & Error Messages

#### 10.1 Malfunction

| Error                                | Cause                          | Action for removal                                         |
|--------------------------------------|--------------------------------|------------------------------------------------------------|
| No data via<br>RS232 or RS422        | Faulty interface configuration | Check interface configuration                              |
| Device error<br>(external diagnosis) | Hardware problems              | Reship LDM 301 for<br>repair, contact technical<br>support |

Table 13 Malfunctions

#### 10.2 Error Codes

| Code | Cause        | Action for removal                                         |
|------|--------------|------------------------------------------------------------|
| E02  | No target    | Check measuring distance                                   |
| E04  | Laser defect | Reship LDM 301 for<br>repair, contact technical<br>support |

Table 14 Error codes

#### 10.3 Error Messages

| Error message                           | Cause                                                 | Action for removal                                         |
|-----------------------------------------|-------------------------------------------------------|------------------------------------------------------------|
| Red status LED of status display lights | Read error message<br>via RS232 or RS422<br>interface | Reship LDM 301 for<br>repair, contact technical<br>support |

Table 15 Error messages

#### 11 PC-Interface Cable (Option)

For parameterization an optional programming is available to link the LDM 301 with a PC (COM port, RS 232). The use of PC software LDMTool is recommended.



Figure 22 PC-Interface cable with power supply

| Nr. SUB-D 9 F | Colour code | Name SUB-D 9 F (RS 232, PC COM) |
|---------------|-------------|---------------------------------|
| Shield        | -           | Cable shield                    |
| 3             | brown       | TxD                             |
| 2             | white       | RxD                             |
| 5             | blue        | GND                             |

Table 16 Connection of programming cable PC sided

| Pin LDM 301 | Colour code | Name LDM 301         |
|-------------|-------------|----------------------|
| Shield      | -           | Cable shield         |
| A           | white       | TxD                  |
| В           | brown       | RxD                  |
| J           | black       | GND                  |
| G           | blue        | VCC (+10 V +30 V DC) |
| L           | grey/pink   | GND                  |

Table 17 Connection of programming cablLDM301 sided



Attention: Heed cable colours: **blue – VCC and gray/pink – GND**! Please use only high quality shielded cable. RS 232 Cable: TxD and RxD are necessary to cross.

#### 12 EC Declaration of Conformity

# CE

In accordance with the Directive of Electromagnetic Compatibility 89 / 336 / EWG, annex I

We herewith declare, represented by the signatories, that the following designated product

#### Laser distance Meter LDM 301

Agree with the following harmonized standards:

EN 61326:1997 + EN 61326/A1:1998 + EN 61326/A2:2001 + EN 61326/A3:2003 Emission: Class B Immunity in acc. with table 1 Electrical equipment for measurement, control and laboratory use, EMC requirements

Rostock, 2007-04-02 ASTECH Angewandte Sensortechnik GmbH

Volker Ahrendt President