

Made in Germany

ESB00163 16A ESB00323 32A

Inrush Current Limiter, Inrush Protector, 3-phase 200/400/500Vac For capacitive loads, models with 16A & 32A, -40°C ... +55 respective +70°C

Short Specification:

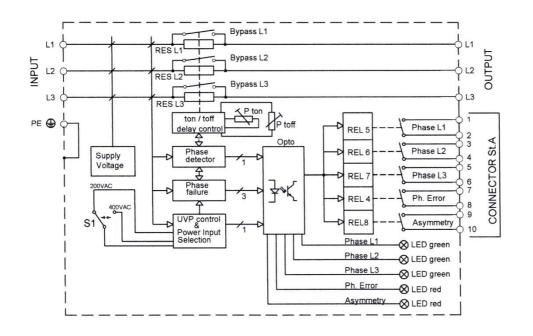
- Peak- / RMS Value Limiter
- Integrated Phase Control Circuit
- 200/400/500Vac 3PH 16A/32A nominal Voltage
- DIN TS35mm Rail
- Spring Terminals 0,5...16mm²
- Integrated Bypass-Relay
- Capacitive Load 2.000uF
- Built-In Temperature Control Circuit
- IP20 Housing

The ESB is a budget-priced inrush peak current limiter for high loads in LEDapplications, complex automation systems and in the machine building. The ESB offers high recommended and interference free operation with capacitive load. It is simple to integrate into existing equipment. The ESB is self- powering and does not require an external power supply.

Integrated Phase Controller

No simple NTC-Version! A Camtec-ESB allows effective reduction of cabling cross sections. It allows using quicker circuit breakers. The ESB prevents from tripping the circuit breakers by high inrush.

Camtec Power Supplies GmbH - Gewerbestrasse 30 - 76327 Pfinztal / Germany S.1/6 (03.2016.02.2) Tel. +49 (721) 46596-0 Fax +49 (721) 46596-77 www.camtec-gmbh.com - info@camtec-gmbh.com (Reserve technical changes and errors. This product may not readily be used in life support systems.)



Technical Data T	able							
Model	ESB00163A.T	ESB00163B.T	ESB00323A.T	ESB00323B.T				
Article Number	3041099011	3041099001	3041099012	3041099002				
AC Input Range	170-230/340-460/425- 575Vac	170-230/340-460Vac	170-230/340-460/425- 575Vac	170-230/340-460Vac				
AC Nominal Voltage	200/400Vac/500Vac	200/400Vac	200/400/500Vac	200/400Vac				
Ambient Temperature	-40°C +55°C continuous	-40°C +70°C continuous	-40°C +55°C continuous	-40°C +70°C continuous				
Derating	+45°C 2,5%/°C	+60°C 2,5%/°C	+45°C 2,5%/°C	+60°C 2,5%/°C				
Peak Current Limiting ±6%	22,	.6A	68,6A					
R.M.S Current Limiting	16A	±6%	48A ±6%					
Max. Capacitive Load	1.500µF pe		2.000uF per load line					
Limiting Time	70-240ms adjustable (2		70-240ms adjustable (150ms Factory Setting)					
(T _{on} Power On)	Tolerand		Tolerance ±10ms					
Release Time	65-170 adjustable (10	00ms Factory Setting)	65-170 adjustable (100ms Factory Setting)					
(Toff Low Voltage)	Tolerand		Tolerance ±10ms					
Limiting Interval	≥ 1000ms (T _{int}	erval for AC _{cont} .)	≥ 1000ms (T _{interval} for AC _{cont.})					
Smallest MCB at 30°C	8A Curve A, 6A Cu	Irve B, 8A Curve Z	22A Curve A, 16A Curve B, 22A Curve Z					
Largest MCB allowed	16	5A	32A					
Line Frequency	50/6	50Hz	50/60Hz					
AC Continuous Current	16A con	tinuous	32A continuous					
Power Supply	self-powered							
Power Consumption	typ. 7W (constant @ nominal operation)							
Limiting Cycles	1 cycle/minute with maximum capacitive load (see above)							
Internal Protection	temperature protection and burn proof fuse in each AC-line							
Cooling		natural co	onvection					
Operation Temp.		nominal ambient temp	perature -40°C +70°C					
Storage Temp.		-40°C +8	5°C 2 years					
EMI	EN55022 class B							
EMS		EN6100	00-6-2,3					
Safety Norms		EN60950-1, EN60204-1						
Safety Class II	VDE0805, VDE0100/ÖVE8001							
MTBF Calculation	377.000h (IEC/EN61709, Siemens SN29500)							
MTTF Calculation	396.000h (+30°C) (IEC/EN61709, Siemens SN29500)							
Humidity	95% (+25°C) not condensing							
Pollution Degree	2 (IEC/EN50178)							
Environmental	climatic 3K3, mechanics 3M4 (IEC/EN60721)							
Altitude max.	3000m (9842 ft.) above sea level							
Dimension (WxHxD)	95x155x122mm							
Housing Parameters	aluminum metal housing							
DIN-Rail	DIN rail TS35mm DIN/EN60715 (TS35/7,5 und TS35/15)							
Weight	1100g							
	spring-type terminal with cable protection 0,516mm ² 228AWG according IEC/EN60664-1, IEC/EN61984							

General Description:

The CAMTEC ESB-series are the 2nd generation cost-effective inrush current limiters. The limiters are made for 200/400/500Vac 16A networks (input selectable via input switch). The line frequency is 50/60Hz. The ESB-Limiter shall be located between the line-switcher/contactor and the load. The ESB-models are designed only for capacitive loads. In the moment of switching-on the system the inrush current of the installed load will be limited for the defined time Ton. Independent from the previous inrush level; the current limiting is always strict. After Ton elapses the current limiting circuit of the ESB will be bypassed. Then the load is directly connected to the AC. If an AC dump overshoots the defined time Toff, it will be detected by the ESB. As soon as the AC recovers the inrush will be limited again. The ESB-models provide an internal temperature control. In case of a failure the device shuts down to safely prevent from overheating or burning.

Field Applications:

The ESB limiter allows connecting much more loads (e.g. LED-power supply / LED-driver) to a pre-installed circuit breaker CB. The ESB safely avoids that the CB will trip. This occurs independently from the objective initial current. The result is that the number of A.C. branch lines and the pre-installed CB can be reduced dramatically. Installation cost exhibit a sustained decline.

Alternatively, the cross section of the branch lines can be reduced when using smaller and faster responding circuit breakers. The cost saving from copper is essential. Sensitive AC networks can be fused safer (e.g. Traffic Control Systems, Street-Lighting, Parking Lots and Tunnels)

The inrush protection circuit always acts to the line conductor. An earth-leakage-trip works within the limits of the legal rules. This fact is also applied while the limiting circuit acts.

Integrated Phase Control:

The 3-phase ESBs have an integrated phase control circuit with basic functions. Each phase is controlled separately. Each phase is limited separately. The error signals are given for each phase. The signals allow to display complex and interlinked failures in a major control room. The different signalized failures will be described on page 4 of this manual.

Signal Output Table					AC Input Selector Settings		
PIN	CTRL	О.К.	LED	FAILURE	LED	ESB00163A.T / ESB00323A.T	ESB00163B.T / ESB00323B.T
1,2	L1	Relais closed	ON	Relais open	OFF	1 = 200Vac	1 = 200Vac
3,4	L2	Relais closed	ON	Relais open	OFF	2 = 400Vac	2 = not selectable
5,6	L3	Relais closed	ON	Relais open	OFF	3 = 500Vac	3 = 400Vac
7,8	Phase Error	Relais closed	OFF	Relais open	ON	The input selector enables to set the	
9,10	Asymmetry	Relais closed	OFF	Relais open	ON	AC Input voltage auf the models.	
Line InputsLine OutputsPE = GNDL1 = Phase 1L1 = Phase 1L2 = Phase 2L2 = Phase 2L3 = Phase 3		1 2	Opto Plate 11		It is located above the phase error Connection. Please make sure that the input is set to the correct AC voltage before taking the device into operation. A wrong setting may cause serious damages to the device!		

Camtec Power Supplies GmbH - Gewerbestrasse 30 - 76327 Pfinztal / Germany S.3/6 (03.2016.02.2) Tel. +49 (721) 46596-0 Fax +49 (721) 46596-77 www.camtec-gmbh.com - info@camtec-gmbh.com (Reserve technical changes and errors. This product may not readily be used in life support systems.)

Operation with SPC to safeguard AC-failures:

The signals "Phase-Error" and "Asymmetry-Error" can be used to trigger an external contactor. The installed load will be disconnected if an error occurs. As soon as the error recovers the installed load will be reconnected to the AC

(find attached pictures Phase-Loss, Phase-sequence, Asymmetry, Over-Voltage and Low-Voltage. The contactor is always named K2.)

In case of phase loss relay 4 opens

after a delay time of 30ms. Synchronic

the relay of the appropriate phase opens, too and its green LED extinguishes. When the phase

extinguishes. When the phase sequence is incorrect, relay 4 opens

after a delay time of 30ms. The Phase

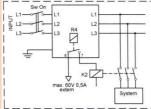
Error LED lights red. When the phase

sequence is correct the LED is off and

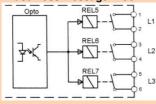
Relay 5 to 7 are galvanic insulated via opto-couplers. If L1 to L3 are operating

the relays are closed. If one phase

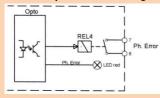
drops its relay opens and the message

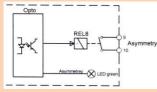

can be used with an active signal

(60V/500mA maximum load each


the relay 4 is closed.

relay)


Phase Loss & Sequence


Phase Loss Message Block

Phase Sequence Monitoring

Asymmetry, Over-/Low Voltage

Sequence o.k.: L1, L2, L3 o.k. REL4 closed Phase Error LED red off

Phase Reversal: L1 failure L2 o.k. L3 failure (sum failure) REL4 open Phase Error LED red on

Low Voltage o.k.:

L1 failure

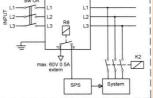
L1 failure L2 o.k.

L2 o.k.

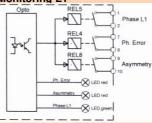
L1, L2, L3 sum o.k.

L3 o.k. (but sum failure)

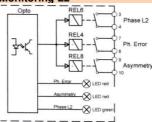
L3 o.k. (but sum failure) Asymmetry REL8 open, LED on

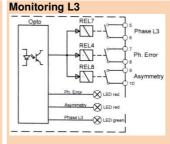

Asymmetry REL8 closed, LED off

Low Voltage failure (-15% drop):


Asymmetry REL8 open, LED on

Overvoltage failure (+15% drop):





Monitoring L1

Monitoring L2

The asymmetry monitoring detects a voltage difference of the three phases to each other. This kind of measuring enables work without the N line (four wire system). If the voltage of the measured AC line drops or exceeds 15% of its nominal selected input relay 8 opens 8-10s delayed and the Asymmetry LED lights red. Measuring tolerances are ±2%.

Phase Monitoring L1 O.K .: REL4.5 closed, LED green on Phase Error LED red off

Phase Monitoring L1 Loss: REL4,5 open, LED green off Phase Error LED red on Asymmetry REL8 remain closed, I FD off

Phase Monitoring L2 O.K .: REL4,6 closed, LED green on Phase Error LED red off

Phase Monitoring L2 Loss: REL4,6 open, LED green off Phase Error LED red on Asymmetry REL8 remain closed, LED off

Phase Monitoring L3 O.K.: REL4,7 closed, LED green on Phase Error LED red off

Phase Monitoring L3 Loss: REL4,7 open, LED green off Phase Error LED red on Asymmetry REL8 remain closed, LED off

Camtec Power Supplies GmbH - Gewerbestrasse 30 - 76327 Pfinztal / Germany S.4/6 (03.2016.02.2) Tel. +49 (721) 46596-0 Fax +49 (721) 46596-77 www.camtec-gmbh.com - info@camtec-gmbh.com (Reserve technical changes and errors. This product may not readily be used in life support systems.)

Line Diagram of Phase Monitoring

Sequence, Voltage and Asymmetry are o.k.:

No Failure: All LEDs of L1, L2, L3 light green, all relays ore closed and all red Error LED are off

Asymmetry in AC line 4 Wire Systems (no N wire): Dissimilar phase load exists, when one phase is overloaded in comparison to the other phases of the 4 Wire System.

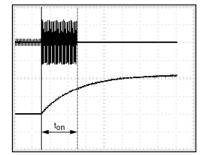
Sequence Monitoring: Failure

Relay4 (Phase Error) opens after 30ms delay time and its error LED lights red

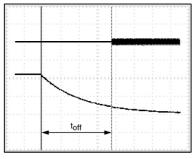
Phase Loss: Failure

Relay4 (Phase Error) opens after 30ms delay time and its error LED lights red, belonging phase LEDs are off and its relays are open

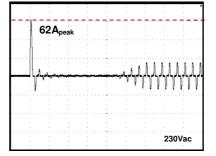
Low Voltage, Overvoltage and Asymmetry:

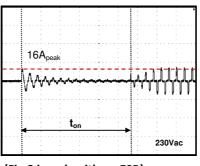

Failure

If voltage under-runs or exceeds $\pm 15\%$ of the selected rated voltage, Relay8 (Asymmetry) opens after 8-10s delay time and its error LED lights red


	Rated Voltage	200Vac	400Vac
_	Low Voltage Operating Point	170Vac	340Vac
-	Over Voltage Operating point	230Vac	460Vac

Design-in of the ESB into AC-Networks


The ESBs are designed to for capacitive loads. It is not allowed to connect the units to other loads. The ESB models are the precise inrush current limiter with an overall tolerance of $\pm 6\%$ of the face value. For the dimension of an upstream connected circuit breaker the R.M.S is the key value of the inrush current, not the peak current. The thermal trigger point will not be met, even while using an extreme fast CB. All-dominant is the magnetic trigger current. By using the empirical formula, $I_{(peak)} \times 0,707_{(factor)} = I_{(r.m.s.)}$ the tripping current can be defined exact. Bear in mind that all the higher the inrush current is, all the faster the input capacitor of many connected switch mode power supplies will be loaded. The technical table on page 2 shows the R.M.S value of all the ESB 3PH types and models.

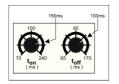

(Fig.5 limiting time Ton)

(Fig.6 AC dump detection Toff)

(Fig.7 inrush without an ESB)

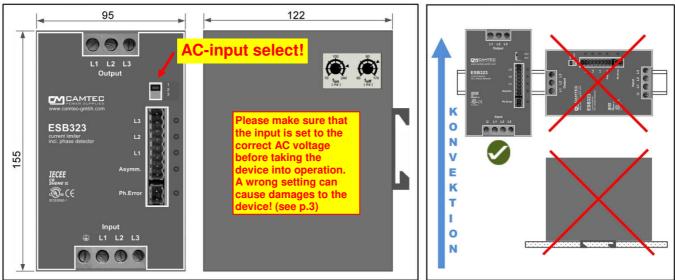
(Fig.8 inrush with an ESB)

Fig.7 and Fig.8


Fig.7 and Fig.8 show the typical start behavior of a NTC protected switch mode power supply. The used test item is a CAMTEC HSE10001.24T with an output of 24V/42A (1008W) on DIN-Rail.

The peak current recordings show the precise limiting of the inrush from formerly $62A_{peak}$ to $16A_{peak}$. The corresponding R.M.S level, that is responsible for the magnetic tripping of the CB, is mark down by factor 0,707. After the time Ton elapsed it is identified that the power supply starts neatly into the continuous operation mode. Now the current is absorbed pulse-shaped from the AC. In detail the full load R.M.S. current consumption level of the HSE10001. hits 9A @ 230Vac.

Camtec Power Supplies GmbH - Gewerbestrasse 30 - 76327 Pfinztal / Germany S.5/6 (03.2016.02.2) Tel. +49 (721) 46596-0 Fax +49 (721) 46596-77 www.camtec-gmbh.com - info@camtec-gmbh.com (Reserve technical changes and errors. This product may not readily be used in life support systems.)



Adjusting the Ton and Toff – time value:

The Ton-time (limiting period) and the Toff-time (response time to arm the circuit after a phase lost or voltage drop) can be adjusted by the owner. The factory settings are Ton=150ms and Toff=100ms. Note: the adjusting range is non-linear.

Mechanics: **IP20 IEC standardized venti**

(picture 9 mechanical dimensions)

(picture 10 mounting direction)

Safety Tests (factory & owner)							
Test	Time	Α	В	С	Type and Factory Tests are executed by the	Dielectric Strength	
Type Test	60s	2500Vac	3000Vac	500Vac	manufacturer. Do not repeat the tests in the field.	Input L1 O	
Factory Test	5s	2000Vac	2000Vac	500Vac	To arrange the field test, remain to the following		
Field Test	2s	2000Vac	2000Vac	500Vac	rules:	L3O	
a) Use appropriate test equipment which apply the voltage with a slow ramp							
b) For every Test L1, L2, L3 at the input and at the output must be connected, Earth must be							

connected Use testing voltage with 50/60Hz frequency only. Note that the 3 Phase output is floating (exists no C) ohmic reference to Earth)

Please read all warnings and advices carefully before installing or operating the ESB. Retain this operation manual always ready to hand. The ESB must be installed by specialist staff only.

Installation:

- Before connecting the ESB to the AC wire system make all wires 1.) free of voltage and assure accidently switch on
- Before installing the ESB switch S1 to the appropriate AC input 2.) voltage (200/400Vac 50Hz).
- Connect the ESB inputs and Outputs to the AC line system. 3.) Assure that the phase sequence is correct. It is not allowed to operate the ESB without the Protected Earth wired!
- Switch the AC line system on and start running the ESB: the 4.) control LEDs of L1, L2, L3 should light green, the red LEDs of the Phase Error and the Asymmetry should be off. All relay contacts of the monitoring outputs are closed.
- In case of any control LEDs do not light like described in step 4, 5.) switch off the AC wire system and check your cabling

Warnings:

Disregard these warnings can cause fire, electric shock, serious accident and death.

- Never operate the ESB without Protective Earth
- 2. Before connecting the ESB to the AC make all wires free of voltage and assure accidently switch on 3. Allow neat and professional cabling
- Never open nor try to repair the ESB by yourself. Inside are 4. dangerous voltages that can cause electric shock 5.
- Avoid metal pieces or any material to fall into the ESB 6. Do not operate the ESB und damp or wet conditions
- 7. The ESB must not be operated under Ex conditions or in **Ex-Area**

Camtec Power Supplies GmbH - Gewerbestrasse 30 - 76327 Pfinztal / Germany S.6/6 (03.2016.02.2) Tel. +49 (721) 46596-0 Fax +49 (721) 46596-77 www.camtec-gmbh.com - info@camtec-gmbh.com (Reserve technical changes and errors. This product may not readily be used in life support systems.)